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ABSTRACT

Polynomial-Phase Signals (PPS) appear in a variety of applications
and several algorithms are available to estimate their parameters in
the presence of noise. Among the available tools, the Product High
order Ambiguity Function (PHAF) has the merit of performing well
in the presence of a superposition of PPS’s. In this work, we gen-
eralize the PHAF to handle two-dimensional PPS’s. Then we show
an example of application motivating such an extension: the high
resolution imaging of moving targets from synthetic aperture radars
(SAR). Using the 2D-PHAF, we will propose an algorithm that com-
pensates jointly for the range cell migration and the phase modula-
tion induced by the relative radar-target motion in order to produce
a focused image of the moving target.

Index Terms— Polynomial-Phase Signals, Synthetic Aperture
Radar, Moving Target Imaging

1. INTRODUCTION

Polynomial-Phase Signals (PPS) are encountered in many applica-
tions [1]. In some cases, they represent an exact modeling of sig-
nals having a polynomial phase modulation, e.g. chirp signals in
radars. In other cases, they constitute a good approximation of sig-
nals whose phase modulation is known to be a smooth function of
time within a given observation interval. According to Weierstrass
theorem, a continuous function defined on a closed interval can be
uniformly approximated as closely as desired by a polynomial func-
tion. Hence, a continuous-phase signal observed in a finite interval
can be well approximated by a PPS. In this second case, the selection
of the polynomial degree affetcs the goodness of the approximation.
Examples of continuous-phase signals are encountered in communi-
cations, as a way to generate signals with good spectral efficiency, as
well in radars, where the phase modulation induced on the radar echo
is impressed by the relative radar-target motion, which is certainly
a continuous function of time. Not surprisingly, many algorithms
have been proposed to estimate the parameters of PPS’s embedded
in noise, see e.g. [1–3]. A case of particular interest occurs when the
observed signal is given by the superposition of multiple PPS’s. In
this case, of course, the superposition is no longer a PPS, but it is
still important to track the instantaneous phases of the single com-
ponents. This model arises, for example, in radar processing where
the received signal is given by the superposition of echoes coming
from different scatterers located at the same distance. The Prod-
uct High-order Ambiguity Function (PHAF) was specifically intro-
duced in [2] to estimate the parameters of the single components.

This work has been supported by SIMTISYS Project, Nr. 263268, within
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The PHAF was then proposed as a tool to produce a focused image
of the ground in SAR in [4]. The analysis based on the PHAF can of
course be extended to moving target imaging. However, when high
resolution radar images are required, it is necessary to compensate
both phase modulation and range cell migration (RCM) induced by
the radar-target relative motion. Some approaches work directly on
the SAR image and base the focusing mechanism on the adaptive
sharpening of the moving target image, as in [5, 7]. These meth-
ods do not attempt to track the phase modulation induced by the
motion. Better performance can be achieved if the phase modula-
tion is properly tracked and compensated. The PHAF-based method
proposed in [2] assumed that the RCM was negligible. A method
incorporating the compensation of RCM was proposed in [8]. How-
ever, the compensation used in [8] assumed that the slant range of
the target was known. In this work, we extend the PHAF to the two-
dimensional (2D) case and we propose new methods to estimate the
parameters of the 2D instantaneous phase, in the general multicom-
ponent case. Then, we apply the new representation to the analysis
of single antenna SAR signals and show how to use the 2D-PHAF to
estimate and compensate the motion-induced phase modulation and
range migration jointly.

2. 2D MULTILAG HIGH ORDER AMBIGUITY FUNCTION
FOR 2D POLYNOMIAL PHASE SIGNALS

A discrete-time 2D Polynomial Phase Signal (2D-PPS) of degreeM
is defined as a constant amplitude signal having an instantaneous
phase given by a 2D polynomial of order M:

s[u, v] = AejΦ[u,v] = Aej2π
PM

m=0
Pm

l=0 am−l,lu
m−lvl

, (1)

with u = 0, . . . , N − 1 and v = 0, . . . , P − 1. This formulation
makes explicit the phase terms having a common degree: All the
terms corresponding to an indexm have degreem. We define the 2D
multilag High order Instantaneous Moment (2D ml-HIM) of order
M , sM [u, v; τ M−1, θM−1], through the following iterative rule:

s1[u, v] = s[u, v];
s2[u, v; τ 1, θ1] = s∗1[u, v] · s1[u + τ1, v + θ1];
· · ·
sM [u, v; τ M−1, θM−1] = s∗M−1[u, v; τ M−2, θM−2]
·sM−1[u + τM−1, v + θM−1; τ M−2, θM−2],

(2)

where τ k := [τ1, . . . , τk] and θk := [θ1, . . . , θk] are the vectors of
delays used up to step k. Given the 2D ml-HIM, the 2D multilag
High Order Ambiguity Function (2D ml-HAF) is defined as the 2D
Fourier Transform of the 2D ml-HIM:

SM (f, ν; τ M−1, θM−1) =

4554978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



=

N−1−TM−1X

u=0

N−1−∆M−1X

v=0

sM [u, v; τ M−1, θM−1]e
−j2π(fu+νv)

(3)
where TM−1 =

PM−1
k=1 τk and ∆M−1 =

PM−1
k=1 θk. The mo-

tivation underlying the previous definitions is quite simple: If the
signal is a single component 2D PPS, every product in (2) reduces
the phase polynomial by one. Hence, if the signal has a phase of
degree M , its 2D ml-HIM of order M has a linear phase. As a
consequence, the 2D ml-HAF has a peak whose position is related
to the phase coefficients of order M . Hence, estimating the peaks
of the 2D ml-HAF allows to recover the phase coefficients. Some
examples are useful to grasp the main properties of the ml-HAF.

M = 2
Applying (2) and (3), the 2D ml-HIM of a PPS of orderM = 2 is

s2[u, v; τ1, θ1] = A2ejΦ2[u,v],

with

Φ2[u, v] = φ0 + 2π[(2τ1a2,0 + θ1a1,1)u + (τ1a1,1 + 2θ1a0,2)v],
(4)

where φ0 is a constant term. Hence, the 2D ml-HAF has a peak in
the point of coordinates

f(τ1, θ1) = 2τ1a2,0+ θ1a1,1 (5)
ν(τ1, θ1) = τ1a1,1+ 2θ1a0,2. (6)

The two frequencies have been expressed explicitly in terms of the
delays τ1 and θ1. For a given pair of delays, we have two obser-
vations (f(τ1, θ1)), ν(τ1, θ1) and three unknowns: a2,0, a1,1, and
a0,2). However, if we compute the ml-HAF using multiple sets of
lags, we get multiple observations related to the the same set of phase
coefficients. Denoting the l-th set of lags as τ(l)

1 , θ(l)
1 , if we use L

sets of lags, we can write the following system of equations:
0

BBBBBB@

f(τ (1)
1 , θ(1)

1 )

ν(τ (1)
1 , θ(1)

1 )
...

f(τ (L)
1 , θ(L)

1 )

ν(τ (L)
1 , θ(L)

1 )

1

CCCCCCA
=

0

BBBBBB@

2τ (1)
1 θ(1)

1 0

0 τ (1)
1 2θ(1)

1
...

...
...

2τ (L)
1 θ(L)

1 0

0 τ (L)
1 2θ(L)

1

1

CCCCCCA

0

@
a2,0

a1,1

a0,2

1

A

(7)
or, in compact form,

f = Θa, (8)
where f ∈ R2L×1 contains the measured frequencies, a ∈ R3×1

is the set of phase coefficients pertaining to the second degree, and
Θ ∈ R2L×3. If the the number of different sets of lags is L ≥ 2
and the sets of lags are chosen so that the columns ofΘ are linearly
independent, the previous system can be inverted to find the phase
coefficient vector a as

â = (ΘT Θ)−1ΘT f . (9)

Once the second order coefficients have been estimated, the second
order phase term can be removed by the received signal by the mul-
tiplication

sc[u, v] = s[u, v] e−j2π(â2,0u2+â1,1uv+â0,2v2). (10)

If the estimated coefficients are correct, the compensated signal
sc[u, v] is a PPS of order one, whose remaining phase coefficients

can be estimated using a Fourier Transform1.

M = 3
The 2D ml-HIM of order 3 of a PPS of degreeM = 3 is

s3[u, v; τ 2, θ2] = A2ejΦ3[u,v],

with
Φ3[u, v] = φ0+

+2π[(6τ1τ2a3,0 + 2τ2θ1a2,1 + 2τ1θ2a2,1 + 2a1,2θ1θ2)u

+(6θ1θ2a0,3 + 2τ1τ2a2,1 + 2τ2θ1a1,2 + 2a1,2τ1θ2)v]. (11)
where φ0 is a constant term.

The relation between the estimated frequencies and the polyno-
mial coefficients is as in (8), where the matrixΘ ∈ R2L×4 is now

Θ =

0

BBBBBB@

6τ (1)
1 τ (1)

2 2ρ(1)
12 2θ(1)

1 θ(1)
2 0

0 2τ (1)
1 τ (1)

2 2ρ(1)
12 6θ(1)

1 θ(1)
2

...
...

...
...

6τ (L)
1 τ (L)

2 2ρ(L)
12 2θ(L)

1 θ(L)
2 0

0 2τ (L)
1 τ (L)

2 2ρ(L)
12 6θ(L)

1 θ(L)
2

1

CCCCCCA

(12)
with ρ(i)

12 := τ (i)
2 θ(i)

1 +τ (i)
1 θ(i)

2 , whereas the phase coefficient vector
is a := (a3,0, a2,1, a1,2, a0,3)

T . Again, the phase coefficients of
order 3 can be recovered provided that a number L ≥ 2 of sets
of lags are used and the lags are chosen so that the matrix Θ is
full-column rank. Once the third order phase coefficients have been
estimated, the overall third order phase term can be removed from
the received signal. If the estimation is correct, the resulting signal
is a second order PPS, whose phase coefficients can be estimated
using the second order ml-HAF, and so on.

3. 2D PRODUCT HIGH ORDER AMBIGUITY FUNCTION

The previous analysis shows that the ml-HAF is a valid tool to pro-
cess single component PPS’s. However, if the signal is composed
by the superposition of multiple PPS’s having different phase mod-
ulations, the approach based on the ml-HAF is no longer valid, as
the multiplications present in the computation of the ml-HIM create
cross products that can alter the estimation of the phase coefficients
substantially. A robust approach for analyzing 2D multi-component
PPS’s can be achieved by generalizing the Product High order Am-
biguity Function (PHAF), introduced in [2] for one-dimensional sig-
nals, to the two-dimensional case.

The computation of the ml-HIM of multicomponent PPS’s gives
rise to auto-terms (products of each component with itself) and
cross-terms (products between different components). The main
idea underlying the 1D PHAF is to enhance the peaks of the auto-
terms with respect to the cross terms by multiplying the ml-HAF
obtained with different sets of lags, after proper rescaling in the
frequency domain. The scope of the scaling operation is to align
the peaks of the auto-terms. This idea can be extended to the 2D
case, provided that the lags are properly chosen. An example of
application to 2D PPS’s may be helpful to clarify the proposed
approach.

Let us consider the superposition ofK 2D PPS’s of orderM :

s[u, v] =
KX

k=1

Akej2π
PM

m=0
Pm

l=0 a
(k)
m−l,lu

m−lvl

. (13)

1In most applications, the zero order coefficient is not important or it can
be incorporated in the amplitude A, which becomes complex.
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Our goal is now to estimate the phase coefficients a(k)
m,l for each sig-

nal component. From (7), we notice that the estimated frequency, for
an arbitrary choice of the lags, is not proportional to a single phase
coefficients, so that scaling is not always possible. However, if we
choose the two sets of lags as follows: (τ(1)

1 = τ1, θ
(1)
1 = 0) and

(τ (1)
1 = 0, θ(1)

1 = θ1), we can generalize the definition of the PHAF
to the 2D case as follows. For the sake of clarity, we illustrate the
approach for the casesM = 2 and 3.

M = 2
In this case, we define two PHAF’s, corresponding to two choices of
the lags, as follows

P2(f, ν; τ 1,0) =
LY

l=1

S2

 
τ (l)
1 f

τ (1)
1

,
τ (l)
1 ν

τ (1)
1

; τ (l)
1 , 0

!
(14)

and

P2(f, ν;0, θ1) =
LY

l=1

S2

 
θ(l)
1 f

θ(1)
1

,
θ(l)
1 ν

θ(1)
1

; 0, θ(l)
1

!
(15)

It is straightforward to check that all the ml-HAF’s appearing in
the definition of P2(f, ν; τ 1,0) exhibit peaks of the auto-terms
lying always in the point of coordinates (2τ(1)

1 a(k)
2,0, τ

(1)
1 a(k)

1,1), ir-
respective of the lag set. Hence the product enhances the auto-
terms. Similarly, the all the ml-HAF’s appearing in the definition
of P2(f, ν;0, θ1) exhibit peaks of the auto-terms in the points of
coordinates (θ(1)

1 a(k)
1,1 , 2θ(1)

1 a(k)
0,2). Hence, again, the products en-

hance the auto-terms. The second order phase coefficients of each
component can then be estimated as follows:

â(k)
2,0 = arg max

f
{|P2(f, ν; τ 1,0)|} 1

2τ (1)
1

(16)

â(k)
1,1 = arg max

ν
{|P2(f, ν; τ 1, 0)|} 1

τ (1)
1

(17)

â(k)
0,2 = arg max

ν
{|P2(f, ν;0, θ1)|}

1

2θ(1)
1

(18)

Actually, a1,1 can also be recovered from P2(f, ν;0, θ1), so that
two estimates of this coefficient are available and can be combined
to reduce the estimation error variance.

M = 3
Extending the previous approach to multicomponent cubic phase
signals, multiple 2D PHAF’s can be defined as follows

P3(f, ν; τ 2,0) =
LY

l=1

S3

 
τ (l)
1 τ (l)

2 f

τ (1)
1 τ (1)

2

,
τ (l)
1 τ (l)

2 ν

τ (1)
1 τ (1)

2

; τ 2,0

!
(19)

P3(f, ν;0, θ2) =
LY

l=1

S3

 
θ(l)
1 θ(l)

2 f

θ(1)
1 θ(1)

2

,
θ(l)
1 θ(l)

2 ν

θ(1)
1 θ(1)

2

;0, θ2

!
(20)

The third order phase coefficients of each component can then be
estimated as follows:

â(k)
3,0 = arg max

f
{|P3(f, ν; τ 2,0)|} 1

6τ (1)
1 τ (1)

2

(21)

â(k)
2,1 = arg max

ν
{|P3(f, ν; τ 2,0)|} 1

2τ (1)
1 τ (1)

2

(22)

â(k)
1,2 = arg max

ν
{|P3(f, ν;0, θ2)|}

1

2θ(1)
1 θ(1)

2

(23)
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Fig. 1. HAF of a signal composed of three PPS’s of order 3.
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Fig. 2. PHAF of the same signal analyzed in Fig. 1.

â(k)
0,3 = arg max

ν
{|P3(f, ν;0, θ2)|}

1

6θ(1)
1 θ(1)

2

(24)

A numerical example is useful to assess the ability of the PHAF
to enhance the auto terms. To this purpose, in Fig. 1 we report
the third order HAF of a signal composed of three superimposed
PPS’s of degree M = 3. We can clearly see that the cross terms are
comparable with the auto terms. In Fig. 2 we report the PHAF of the
same signal analyzed in Fig. 1. We can clearly see how the PHAF is
effective in reducing the cross terms with respect to the auto terms.

4. APPLICATION TOMOVING TARGET SAR IMAGING

In this section, we apply the 2D-PHAF to the imaging of moving
targets observed by a SAR. The 2D-PHAF in this case is used to
compensate the phase modulation and the range cell migration in-
duced by the radar-target motion jointly. The target is supposed to
be a rigid body moving at constant velocity during the observation
interval. Furthermore, we also suppose that the target is constituted
by a set of dominant scatterers. We consider a spaceborne SAR sys-
tem flying at an altitute z = H , moving at constant velocity v along
the y-axis, and illuminating the scene with an off-nadir angle α and
zero squint angle. The target is supposed to move over the plane of
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Fig. 3. SAR image of a moving target using Chirp Scaling Algorithm
matched to the fixed ground.

equation z = 0, with velocity vector having components (vx, vy).
For each position of the satellite, the radar-target distance is:

R(ta) =
q

(H tanα + vxta)2 + (v − vy)2 t2a + H2 (25)

where ta = u · PRT is the slow time (or azimuth time) and PRT
is the Pulse Repetition Time. Since the shifts of the radar position
are typically much smaller than the radar-target distance R0 at time
0, we can approximate R(ta) with its Taylor series expansion:

R(ta) ∼=R0 + vx sinαta +
v2

x cos2 α + (v − vy)2

2R0
t2a+

+
vx sinα

ˆ
v2

xcos2α + (v − vy)2
˜

2R2
0

t3a + O(t4a)

(26)

The transmitted signal is a chirp signal with sweep rate µ and carrier
frequency f0. The antenna beam pattern, in the azimuth plane, is
indicated as G(φ). Using the usual start-stop approximation, the
echo received from a pointlike moving target at (fast) time tr and
(slow) time ta is

s (ta, tr) = A0rectT

„
tr − 2R(ta)

c

«
G(v(ta−t0)/R0)e

jΨ(ta,tr)

(27)
with

Ψ(ta, tr) = −4π
λ

R(ta) + πµ

»
tr − 2R(ta)

c

–2
(28)

where c is the speed of light, λ = c/f0 is the radar wavelength, t0
is a reference time associated to the point-like target, A0 is the am-
plitude of the echo. This expression shows that the echo undergoes
a phase modulation and a time-varying delay that depend on the rel-
ative radar-target motion, which is unknown. To produce a focused
image of the target, it is necessary to compensate both effects. To
this end, we apply a Fourier Transform along the time axis tr. This
converts the time-varying delay into a phase modulation in the trans-
formed domain. Using the stationary phase principle [9], the signal
in the range transformed-azimuth time domain has a phase:

Ψ(ta, ftr ) ∼= − 4π
c

(f0 + ftr)R(ta) − π
µ

f2
tr . (29)
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Fig. 4. SAR image of the same moving target as in Fig.3 after motion
compensation via 2D-PHAF.

SubstitutingR(ta) in this expression with its Taylor series expansion
(26) and neglecting the terms of order greater than 3, we obtain the
following approximated expression

Ψ(ta, ftr ) ∼= − 4π
λ

R0 − 4π
c

b11 (f0 + ftr ) ta − 4π
c

R0ftr +

− 4π
c

b21 (f0 + ftr ) t2a − π
µ

f2
tr

(30)

with b11 = vxsinα and b21 = (v2
xcos2α + (v − vy)2)/(2R0).

Sampling the signal at ta = uPRT and ftr = vFs, where Fs is
the sampling frequency, the phase in the transformed domain can be
written as

Φ[u, v] := Ψ(uPRT, vFs) ∼=2π(a00 + a01v + a10u + a11uv

+ a02v
2 + a20u

2 + a21u
2v),

(31)

where a0,0 = − 2
λR0, a0,1 = − 2

c R0Fs, a1,0 = − 2
c b11f0PRT ,

a1,1 = − 2
c b11FsPRT , a2,0 = − 2

c b21f0PRT 2, a0,2 = − 1
2µ F 2

s

a2,1 = − 2
c b21FsPRT 2. To produce a focused image, we apply the

2D PHAF of orderM = 3, described in the previous section to esti-
mate and then compensate the phase behavior given in (31).
In the following, we compare the synthetic images obtained with
chirp scaling (Fig. 3) and with the proposed 2D PHAF (Fig. 4).
The system parameters are chosen as follows: the satellite velocity
is 7500m/s; the off-nadir angle is 20◦, the (nominal) azimuth and
range resolutions are 2m; the target velocity is 20m/s and the tar-
get moves at a 45◦ angle with respect to the satellite trajectory; the
number of dominant target scatterers is 11. We can clearly see the
effectiveness of the 2D-PHAF-based approach in compensating both
range migration and phase modulation and producing a well focused
target image.

In summary, the extension of the PHAF to the 2D domain pro-
vides a new powerful tool to process 2D multi-component PPS’s.
The generalization to the 2D case offers additional degrees of free-
dom in selecting the lags to enhance the PHAF capabilities to track
multiple components. Moving target imaging with SAR constitutes
an interesting application of the proposed 2D-PHAF.
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