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ABSTRACT

Optimal transmit power allocation strategies are proposed for
an energy harvesting estimation system, where energy can be
harvested from the environment and buffered in a battery for
future use. With the aim of minimizing the mean squared
error at the receiver, two types of side information (SI) avail-
able to the transmitter are considered: causal SI (energy har-
vested in the past) and non-causal SI (energy harvested in the
past, present and future). For the case where non-causal SI is
available and battery storage is unlimited, it is shown that the
optimal power allocation can be attained by a simple water-
filling-like procedure, where the water level follows a non-
decreasing staircase function. Dynamic programming is used
to optimize the allocation policy when causal SI is available.
The issue of unknown transmit power at the receiver is also
addressed.

Index Terms— Energy harvesting, estimation, dynamic
programming, convex optimization.

1. INTRODUCTION

Recent development in hardware design has empowered
many wireless networks to support themselves by harvesting
energy from nature through various sources such as solar
cells, vibration absorption devices, among others, and store
excess energy for future use. Unlike traditional battery-
powered systems, where transmission is often subject to a
constant power constraint, the energy available to an energy
harvesting system typically fluctuates in time and is often
modeled as a random process. This incurs additional diffi-
culty in the system design, and in particular, how to allocate
powers across time for improved system performance.

There has been recent works on estimation and commu-
nication systems with energy harvesters as the power source.
Optimal communication and estimation strategies in a remote
estimation problem with energy harvesting sensors are stud-
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ied in [1]. In [2], optimal energy management schemes for en-
ergy harvesting communication systems operating in fading
channels are developed. Throughput optimization via power
allocation for a communication system with energy harvest-
ing constraints is studied in [3]. Invariably, a key ingredient
among those works is the use of dynamic programming [4] for
power allocation when transmitter does not have non-causal
information about energy available in the future.

In this work, we consider a remote estimation system with
the transmitter powered by energy harvesting devices. Both
the signals and the additive noises are assumed to be indepen-
dent and identically distributed (i.i.d.) Gaussian sequences.
The objective is to minimize the mean squared error (MSE)
at the receiver (estimator), averaged over the entire sequence.
The system is illustrated in Fig. 1. Notice that under a con-
stant power constraint, uncoded transmission is known to be
an optimal strategy [5]. While it is not clear whether this
is still true with energy harvesting constraints, we apply the
same uncoded transmission scheme due to its simplicity and
minimum delay compared with a coded approach [6].

The central question we try to answer in the present work
is how to determine transmit power across time under vari-
ous assumptions as to what is known at the transmitter and/or
receiver: whether the transmitter has non-causal side informa-
tion (SI) of future harvested energy, and whether the receiver
knows the transmit power a priori. The clairvoyant case,
namely the transmitter has non-causal knowledge of future
harvested energy and the receiver knows the exact transmit
power, serves as a benchmark for performance comparison.
We will then replace these idealized assumptions with more
realistic ones and provide solutions to power allocation under
each scenario. Performance evaluation will be conducted to
identify conditions under which the optimal performance in
terms of minimum mean square error (MMSE) with realistic
assumptions is close to that of the clairvoyant case, therefore
providing guidance on system design.

The rest of the paper is organized as follows. Section 2
describes the system model. In Section 3, we consider the op-
timal power allocation policy when the transmitter has non-
causal SI. The case where causal SI is available to the trans-
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mitter is studied in Section 4. Section 5 includes performance
comparison through numerical simulation and Section 6 con-
cludes the paper.

2. SYSTEM MODEL

While the transmission of input sequence occurs ‘instanta-
neously’ using uncoded transmission (i.e., amplify and for-
ward), we assume that the energy harvesting occurs in blocks
with each block consisting of N input variables. Transmit-
ter power is also allocated in a block-wise fashion: within
each block the transmitter uses a given average transmit
power, and power allocation occurs across different blocks.
Let the entire sequence consist of K blocks, indexed using
j = 1, 2, · · · ,K . The sequence within each block is indexed
using i = 1, 2, · · · , N . Thus the random sequence to be
estimated can be denoted by S

j
i . Let Sj

i be i.i.d. Gaussian
with mean zero and variance σ2

S . Uncoded transmission [5]
is used, hence the transmitted signal corresponding to S

j
i is

X
j
i =

√

P j

σ2
S

S
j
i

where P j is the average power constraint in block j. The
transmitted signal goes through an AWGN channel character-
ized by

Y
j
i = X

j
i + Z

j
i

where Zj
i is an i.i.d. Gaussian noise sequence with mean zero

and variance σ2
Z and is independent of the transmitted signal.

The receiver output Ŝj
i denotes the estimate of the transmitted

signal Sj
i .

Transmitter Receiver

Energy Storage

S
j

i

X
j

i

Z
j

i

Y
j

i
Ŝ
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Fig. 1. System model

The blockwise energy harvesting and the transmission
scheme can be modeled by the following parameters:

• P j denotes the average amount of energy to be ex-
pended in each slot of block j. To ease our notation, we
have implicitly assumed that the energy is normalized
by the block length, thus P j represents both the aver-
age power at block j as well as the energy expended at
block j.

• Hj denotes the average amount of energy harvested in
each slot of block j. We assume that energy is replen-
ished at the end of each block, i.e., Hj is not available
until the beginning of block j + 1.

• Bj indicates the energy storage level at the beginning
of block j. It varies linearly as long as the storage limit
Bmax is not exceeded such that

B
j+1 = min{Bj − P

j +H
j
, Bmax}.

The energy harvesting constraint is imposed on each
block in the sense that the expended power can not exceed
that available at the current block, i.e.,

P
j ≤ B

j

for any j = 1, · · · ,K . The block length N is assumed to
be sufficiently large such that the average power constraint is
satisfied.

We aim to minimize the MSE averaged over the entire
sequence

D =
1

K

K
∑

j=1

1

N

N
∑

i=1

(

Ŝ
j
i − S

j
i

)2

. (1)

Apparently, D depends on how transmit power is allocated
across blocks and the estimator used at the receiver (i.e.,
whether the receiver knows the transmit power).

3. NON-CAUSAL SI

Non-causal SI is said to be available if the transmitter has
prior knowledge of the harvested power [H0H1 · · ·HK−1]
before transmission begins. To develop more insight on the
structure of the optimal energy allocation scheme, we as-
sume in this section that the battery storage is unlimited, i.e.,
Bmax → ∞.

3.1. Transmit Power Known to Receiver

If the receiver knows the transmit power, it can construct the
optimal MMSE estimator

Ŝ
j
i =

√
P jσSY

j
i

σ2
Z + P j

and the corresponding MSE is

E [D] =
1

K

K
∑

j=1

σ2
Sσ

2
Z

σ2
Z + P j

△
=

1

K

K
∑

j=1

h1(P
j). (2)

Then the optimal power allocation can be obtained by solving
the following optimization problem

minimize E [D]

subject to P
j ≥ 0
j
∑

k=1

P
k −

j−1
∑

k=0

H
k ≤ 0

for j = 1, · · · ,K . It is easy to verify that the above prob-
lem is convex and satisfies the Slater’s condition [7]. Hence,
the Lagrange duality method can be used to obtain the global
optimum. The Lagrangian associated with this problem is

L =
1

K

K
∑

j=1

σ2
Sσ

2
Z

σ2
Z + P j

−
K
∑

j=1

µjP
j +

K
∑

j=1

λj

(

j
∑

k=1

P
k −

j−1
∑

k=0

H
k

)

.

Using the Karush-Kuhn-Tucker (KKT) conditions

P
j ≥ 0

µj ≥ 0

µjP
j = 0
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j
∑

k=1

P
k −

j−1
∑

k=0

H
k ≤ 0

λi ≥ 0 (3)

λi

(

j
∑

k=1

P
k −

j−1
∑

k=0

H
k

)

= 0 (4)

∂L
∂P j

=
−σ2

Sσ
2
Z

(σ2
Z + P j)2

− µj +
K
∑

k=j

λk = 0

we obtain the optimal solution as

P
j = max





σSσZ
√

∑K

k=j
λk

− σ
2
Z , 0



 . (5)

Equation (5) can be interpreted as a staircase water-filling
procedure with a flat bottom of height σ2

Z [3]. Denote the
water level at block j to be

νj =
σSσZ

√

∑K

k=j λk

. (6)

Comparing (5) with the solution to the standard water-filling
problem (Example 5.2 in [7]), we see that the optimal water
level is not a constant, but changes over the blocks. We define
the following for convenience:

• If the water level changes after block t, i.e., νt 6= νt+1,
then block t is defined to be a transition block. Block K

is also a transition block, as we define νK+1 = ∞. Let
S = {t1, t2, · · · , t|S|} be a sequence that contains all
the indices of the transition blocks such that t|S| = K .

• If ti, ti+1 ∈ S, then the blocks indexed by ti +
1, · · · , ti+1 are called the ith transition interval.

The optimal power allocation satisfies the following proper-
ties:

• The water level is non-decreasing over the blocks. This
can be easily seen from (3) and (6). In fact, the water
level is a staircase-like function.

• The battery storage is empty at the end of a transition
block, i.e., Bj+1 = 0 if j ∈ S. This can be observed
from the definition of the water level (6) and the com-
plimentary slackness condition (4).

• The optimal power allocation can be obtained by con-
ventional water-filling for each of the transition inter-
vals subject to the sum power constraint of the total en-
ergy harvested within this transition interval. This fol-
lows naturally from the previous property that energy
harvested in any transition interval is depleted.

A backward-search procedure (Algorithm 2 in [3]) can be im-
plemented to find the optimal transition blocks that solve the
problem.

3.2. Transmit Power Not Known to Receiver

If the transmit power is not readily available, the receiver uses
an estimate of the transmit power to construct a MMSE esti-
mator. Choose the following P̂ j to be the estimate of the

transmit power in block j and D̃ to be the corresponding MSE
obtained using P̂ j as the transmit power:

P̂
j = max

(

1

N

N
∑

i=1

(Y j
i )

2 − σ
2
Z , 0

)

(7)

D̃ =
1

K

K
∑

j=1

(

P̂ jσ2
Z +

(

σ2
Z + P̂ j −

√

P̂ jP j

)2
)

σ2
S

(σ2
Z + P̂ j)2

△
=

σ2
S

K

K
∑

j=1

f(P̂ j).

Then we form the optimization problem with EP̃ j [D̃] as the
objective function

minimize EP̃ j [D̃] (8)

subject to P
j ≥ 0
j
∑

k=1

P
k −

j−1
∑

k=0

H
k ≤ 0.

Since it is difficult to evaluate EP̃ j [D̃] directly, we con-
sider its approximation which is asymptotically accurate as
N becomes large. For simplicity, we also replace P̂ j in (7)
using the following estimate

P̃
j =

1

N

N
∑

i=1

(Y j
i )

2 − σ
2
Z .

Define ∆ such that

P̃
j = P

j +∆.

It is straightforward to verify that

E [∆] = 0

E [∆2] =
2

N
(σ2

Z + P
j)2.

Then it follows from Tailor approximation that

EP̃ j [D̃]
.
=

σ2
S

K

K
∑

j=1

E
[

f(P j) + f
′(P j)∆ +

f ′′(P j)

2
∆2

]

=
σ2
S

K

K
∑

j=1

(

f(P j) + f
′(P j)E [∆] +

f ′′(P j)

2
E [∆2]

)

=
σ2
S

K

K
∑

j=1

(

σ2
Z

σ2
Z + P j

+
(P j)2 + 14P jσ2

Z + σ4
Z

2NP j(σ2
Z + P j)

)

(9)

△
=

1

K

K
∑

j=1

h2(P
j). (10)

where f ′(·) and f ′′(·) denote the first and second derivative
of f(·). It is straightforward to verify that h2(·) is convex.

Substituting the objective function by (9), we obtain from
the KKT conditions that
K
∑

k=j

λk =
σ2
Sσ

2
Z

K

(2N + 13)(P j)2 + 2P jσ2
Z + σ4

Z

2N(P j)2(σ2
Z + P j)2

△
= g(P j).
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Fig. 2. D1 vs σ2
Z with, K = 4 and Hj i.i.d. uniformly dis-

tributed on {1, 2, · · · , 9} for j = 0, 1, 2, 3

It is easily seen that the derivative of both g(·) and its in-
verse g−1(·) are negative, which means P j is decreasing in
∑K

k=j λk. Comparing with (5) where P j is also a decreasing

function of
∑K

k=j λk, we observe that the optimal power allo-
cation can, again, be obtained through staircase water-filling,
but with a flat bottom of height 0.

4. CAUSAL SI

In this section we assume Hj follows the first-order station-
ary Markov model over j and consider the case of causal SI
available at the transmitter. Therefore, the transmitter only
knows [H0H1 · · ·Hj−1] at the beginning of block j. For fi-
nite and arbitrary Bmax, we construct the following problem
to find the optimal power allocation

minimize
1

K

K
∑

j=1

1

N

N
∑

i=1

E [(Ŝj
i − S

j
i )

2]
△
=

1

K

K
∑

j=1

h(P j)

subject to 0 ≤ P
j ≤ B

j

B
j = min{Bj−1 +H

j−1 − P
j−1

, Bmax}

for j = 1, · · · ,K , where h(·) = h1(·) in (2) if the transmit
power is known to the receiver; otherwise h(·) = h2(·) in
(10).

In general, this problem cannot be solved by indepen-
dently minimizing h(P j) due to energy harvesting con-
straints. Instead, the optimal power allocation policy can
be obtained by recursively computing JK , · · · , J1 based on
Bellman’s equation, where

JK(H,B) = min
0≤P≤B

h(P ) = h(B)

Jj(H,B) = min
0≤P≤B

(

h(P ) + J̄j+1(H,B − P )
)

for j = 1, · · · ,K − 1 and
J̄j+1(H,x) = EH̃

[

Jj+1

(

H̃,min
(

Bmax, x+ H̃
))

|H
]

. (11)
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Fig. 3. D2 vs σ2
Z with σ2

S = 1, K = 4 andHj i.i.d. uniformly
distributed on {1, 2, · · · , 9} for j = 0, 1, 2, 3

In (11), J̄j+1 indicates the expected MSE accumulated
from block [j+1, · · · , K]. As expected, the solution ensures
that all power is depleted at block K whereas the power al-
located to any intermediate block is determined by the past
harvested energy and power allocations.

5. NUMERICAL RESULTS

Denote D1 and D2 to be the distortions (defined in (1))
achieved with and without knowledge of the transmit power
respectively. In Fig. 2, we fix K = 4, σ2

S ∈ {10, 102, 104}
and vary σ2

Z from −20dB to 20dB to examine the corre-
spondingD1. The harvested energyHj is assumed to be i.i.d.
uniformly distributed on {1, 2, · · · , 9}, for j = 0, 1, 2, 3. It
can be observed that the distortion with both causal SI and
non-causal SI increases with increasing noise variance. The
distortion with causal SI always dominates that with non-
causal SI though the difference between the two is very small
under this setup.

Fig. 3 illustrates the performance when the knowledge of
transmit power is not available to the receiver. The settings of
K and Hj are the same as in Fig. 2. The signal variance σ2

S is
fixed to be 1. It can be seen that D2 increases with increasing
σ2
Z . Here we compare two different N values because the

number of time slots in a block has a significant impact on
the accuracy of transmit power estimation and therefore on
the overall performance. As expected, smaller N results in
larger distortion.

6. CONCLUSION

This paper studied the problem of minimizing the mean
squared error of an energy harvesting estimation system via
power allocation over a finite number of blocks. Optimal
power allocation strategies are developed for cases where ei-
ther non-causal SI or causal SI is available at the transmitter,
with or without transmit power knowledge at the receiver.
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