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ABSTRACT
In this paper, a novel hybrid OFDM receiver based on sparse vari-
ational Bayesian (VB) learning and soft-input soft-output decoding
is proposed. By noticing that a key part of the inference problem
approximated by VB (message-passing) methods may be inferred
exactly, an genetic interfacing structure is proposed allowing the
use of virtually all existing soft-input soft-output decoding schemes.
Therefore the tasks of joint channel state estimation, demodulation
and decoding are iteratively solved under the proposed hybrid vari-
ational Bayesian framework. The bit-interleaved coded modulation
with Turbo coding is used to demonstrate the potential performance
of the proposed structure. Very promising results in performance are
observed in computer simulated experiments.

Index Terms— OFDM, channel estimation, demodulation, de-
coding, variational Bayesian methods

1. INTRODUCTION

The success of the combination of OFDM and Shannon limit ap-
proaching codes has been adopted in many state-of-the-art wireless
communication systems. In Long Term Evolution (LTE), for exam-
ple, OFDM and Turbo coding are successfully employed together
to provide near-capacity physical link for mobile phones and data
terminals. In order to achieve this goal wireless multipath chan-
nels, advanced channel estimation and equalization techniques are
required. This paper focuses on the design of a variational Bayesian
method based algorithm for joint channel estimation (for both multi-
path channel impulse response and channel noise variance), demod-
ulation and decoding in OFDM systems.

Throughout this paper the following notations shall be used. The
expressions diag(·) and Diag(·) denote the vector consisted of diag-
onal elements of a matrix and the diagonal matrix formed by putting
the elements of a vector on its main diagonal, respectively. The su-
perscripts (·)T and (·)H denote matrix transposition and Hermitian
transposition respectively. The operators tr(·) and det(·) designate
trace and determinant of a matrix. The expectation with respect to
probability distribution function q is expressed as 〈·〉q . Curly letters
(e.g. R andA) are used to designate sets. A subvector is denoted by
attaching at subscript an index set pointing to desired elements (e.g.
vI with I = {1, 3, 5}). Similarly, a matrix with an index set at its
subscript denotes the submatrix consists only the rows specified by
the set, i.e. MI .

2. SIGNAL MODEL

Throughout this paper, cyclic-prefix orthogonal frequency division
multiplexing (CP-OFDM) is considered and its complex baseband

representation is used. The system model of CP-OFDM is summa-
rized as follows. Let Nc and Ncp denote the number of subcarriers,
the length of cyclic prefix in samples, respectively. Let xl and yl,
with l = 0, . . . , Nc − 1, denote the symbols transmitted and re-
ceived respectively over the l-th subcarrier. The system input-output
relation is given by yl = Hlxl + zl where zl is the overall interfer-
ence including the AWGN noise and inter-carrier interference (ICI)
whose statistical property is discussed later in this section. And
Hl is the narrowband channel coefficient expressed as the Fourier
transform of a discrete-time time-varying impulse response hm, i.e.,
Hl =

∑Ncp−1
m=0 hme

−j2πlm/Nc . Slow fading channel is assumed
so that the multipath channel can be considered constant during one
OFDM symbol period.

It is convenient to express the system model in a matrix
form. First define the Nc × 1 vectors y = [y1, y2, . . . , yNc ]T ,
z = [z1, z2, . . . , zNc ]T , Hk = [H1, H2, . . . , HNc ]T and x =

[x1, x2, . . . xNc ]T . Therefore H and h are related through the dis-
crete Fourier transform, i.e. H = F {h} with h being the stack of
sampled channel impulse response {hm}. Using these notations the
system input-output relation can be expressed in terms of h

y =
√
NcDiag(x)Dh + z (1)

where D ∈ CNc×Ncp is a partial unitary DFT matrix consisting of
the first Ncp columns of a Nc ×Nc DFT matrix. The signal model
(1) gives the input-output relation of a CP-OFDM system and for-
mulates the time-domain channel estimation problem as an inverse
problem. It is also useful to study the pilot and data carrying subcar-
riers separately through the following equations using the notations
defined for submatrices before

yP =
√
NcDiag(xP)DPh + zP (2)

yD =
√
NcDiag(xD)DDh + zD (3)

where P andD denotes the index sets pointing to pilot carrying sub-
carriers and data carrying subcarriers, respectively.

3. PROBABILISTIC GRAPHIC MODEL FOR INFERENCE

A graphical representation of the signal model introduced in previ-
ous section will be given here. The joint probabilistic distribution
will be factorized according to the graphical model and will be used
to develop the inference procedure.

3.1. Probabilistic Characteristics of the Signals

In system model (1) the noise term zk,l is modeled as a AWGN ran-
dom vector [1]. The probability density function (PDF) of the output
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vector yk, given the noise precision parameter (inverse of variance)
τ , 1/σ2 and hk, can therefore be written as

p(y|h, σ2,x) = CN (y|
√
NcDiag(x)Dh, τ−1I) (4)

=
∏
`

CN (y`|
√
NcH`x`, τ

−1). (5)

In this work, sparse multipath channels is assumed and each
multipath coefficients hl’s are modeled as an independent circularly
symmetric Gaussian random variable with many of which has very
small amplitude. In order to exploit the sparseness of the channel
within the Bayesian framework a sparseness-promoting prior distri-
bution needs to be assigned to the vector h. A two-layer hierarchical
model [2] is considered to model the CIR vector. First recall that the
CIR vector h is modeled as a circularly-symmetric Gaussian vector
with PDF

p(h|α) =

Ncp−1∏
l=0

(αlπ
−1) exp{−αl|hl|2} (6)

where αl is defined as the precision (inverse of variance) of a Gaus-
sian density function. Notice that the sparseness of h is controlled
by the independent αl’s assigned to each hl, i.e., most αl’s are very
large or numerically equals to infinity resulting in the correspond-
ing distribution strongly peaked at zero. To embody this idea, [3]
proposed to assign a gamma prior to the parameters p(τ) and p(α):

p(τ |a, b) = Ga(τ |a, b), p(α|c, d) =

Ncp∏
l=1

Ga(αl|c, d) (7)

where Ga(x|a, b) = Γ(a)−1baxa−1e−bx with Γ(·) being the
gamma function. And by setting the parameters of these pri-
ors to zeros, i.e. a = b = c = d = 0, will give uninfor-
mative (improper) priors (over a logarithmic scale) to α and τ .
The prior distribution of h is revealed by marginalization, i.e.
p(h; c, d) =

∫∞
0
p(h|α)p(α; c, d)dα. This integration results

in a product of PDFs of Student-t distributions as p(h|c, d) =∑
l

1
π
dcΓ(d+1)

Γ(d)
(d + |hl|2)−(c+1) whose probability mass heavily

concentrates along the coordinate axes in the h space.
Finally, the transmitted data symbols at l-th subcarrier xl are

subject to a discrete uniform distribution, i.e,

p(xl) =
∑
x∈X

1

M
δ(xl − x) (8)

where X denotes the set of modulation symbols, M = |X | is the
modulation order, and δ(·) denotes the Dirac delta function.

3.2. Graphical Representation

Let V = {yD,yP ,xP} and U = {xD,h,α, τ} denote the set
of all observed variables and unknown variables, respectively, in
the graphical model. The joint PDF of all variables may then
be given by p(U ,V) = p(y|τ,x,h)p(xD)p(h|α)p(α)p(τ) and
the first term on the right hand side can be further split into
p(y|τ,x,h) = p(yP |τ,xP ,h)p(yD|τ,xD,h) where the pilot
tones and data carrying subcarriers are separated explicitly. This
factorization indicates an acyclic directed graph depicted in Fig-
ure 1, which lays the foundation to the VB inference procedure. In
this figure, shaded nodes represent the observed variables, yP and
yD , corresponding to received pilot tones and data carrying symbols

respectively; and unshaded nodes represent the hidden nodes, α,
1/σ2, h and xD , that need to be inferred from the observed data.
The box with a positive integer number on the corner around a node
denotes a plate, which indicates that the contained node and its con-
nected edges are duplicated the number of times specified by this
integer number. Note that the nodes corresponding to the message
bit stream b does not present in the joint PDF since xD is uniquely
determined by b through coding and modulation rules.
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Fig. 1. Bayesian inference model for joint sparse channel estima-
tion, detection and decoding. The dashed nodes represents known
variables which is not involved in variational updates

4. HYBRID VB INFERENCE ON GRAPH

Again let V = {yD,yP ,xP} and U = {xD,h,α, τ}. For
the approximation purpose, choose a structured factorial approx-
imation to the posterior distribution p(U|V) given by Q(U) =
Qh(h)Qα(α)Qτ (τ)QxD (xD). For convenience, Qθ(θ) will
be denoted by Q(θ) when there is no ambiguity where θ ∈
{α,h, τ,xD} is some collection of variables. Therefore, the vari-
ational Bayes method may be used to optimize this factorized
distribution to approximate the true posterior distribution of desired
parameters.

4.1. Optimizing distributions of h, α and τ

The maximizing distribution of Q∗(h), Q∗(α) and Q∗(τ) is again
evaluated using the standard variational procedure due to [4] given
by

Q∗(θ) =
1

Z
exp〈lnP (V,U)〉U\θ (9)

where Z is a normalization constant that ensures the distribution
Q∗(θ) integrating to one and 〈·〉U\θ denotes the expectation with
respect to the distributions Q∗(U\θ). Notice that the likelihood dis-
tributions ofh,α and τ belong to the exponential family. Evaluation
of (9) will give raise to the following optimizing distributions,

Q∗(h) = CN (h|〈h〉,Σh), (10)

Q∗(α) =

Ncp∏
l=0

Γ(αl|a∗l , b∗l ), (11)

Q∗(τ) = Γ(τ |c∗, d∗), (12)
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where Ncp is the normalized length of the multipath channel. And
setting the hyperparameters a = b = c = d = 1 the optimizing
parameters are given by

Σh =
[
Diag〈α〉+ 〈τ〉

(
ΦH
p Φp + 〈ΦH

d Φd〉
)]−1

, (13)

〈h〉 = 〈τ〉ΣhΦ̃
H

y, (14)

ãl = 1, b̃l = 〈|hl|2〉, (15)
c̃ = (Np +Nd), (16)

d̃ = ‖y − Φ̃〈h〉‖22 + tr
(
ΣT

h

(
ΦH
p Φp + 〈ΦH

d Φd〉
))

(17)

where 〈ΦH
d Φd〉 = NcD

H
DDiag(diag(〈xDxHD 〉))DD , 〈αl〉 =

ãl/b̃l and 〈τ〉 = c̃/d̃. It is noted thatQ(xD) will be obtained in Sec-
tion 4.2. Optimizing distributions of the channel (hyper-)parameters
has heretofore been derived. Excluding the terms involving xD
and computing with only pilot tones, (10) (11) and (12) may serve
as a stand-alone VB based channel estimator scheme for OFDM
communication systems, similar to the graphical Bayesian learning
based channel estimator described in [5].

4.2. Demodulation and Decoding

In the graphical model, the prior of xD is naturally set to a dis-
crete distribution. In last section this discrete assumption over xD
does not cause any difficulty to updating other hidden variables in the
model since only the first and second moments ofQ(xD) are needed
(17). And these moments can be easily calculated for a discrete dis-
tribution. However, direct application of variational optimizing for-
mula will lead to an awkward optimizing distribution Q∗(xD) since
the discrete distribution is conjugate to the the Gaussian likelihood
of yD . By studying the graphical structure it is found that exact
method may be used on xD on the right hand side of in Figure 1.
The combination of variational and exact method thus indicates a
hybrid architechure for an OFDM receiver.

Using the optimizing distributionsQ(h)Q(τ) as an approximate
to the posteriori distribution, the exact marginalization on xD gives

P̃ (xD|y) =

∫
P (xD|h, τ,yD)Q(h)Q(τ)dhdτ (18)

where Q(h)Q(τ) is used in the place of p(h, τ |yD,yP) due to VB
assumption. The likelihood of xD in the integral by Bayes’ theo-
rem can be expressed as P (x|h, τ,yD) = p(yD|h, τ,x)P (xD =
x)/p(yD). Substituting this result into (18), the marginal distribu-
tion of each transmitted codeword bit cj is given by

P̃ (cj = c|y) =
∑
∀x:cj=c

p̃(yD|x)P (x)/p̃(yD) (19)

where p̃(yD|x) =
∫
p(yD|h, τ,x)Q(h)Q(τ)dhdτ and p̃(yD) =∑

x p̃(yD|x)P (x). It is noteworthy that there is no constraints on
how does the prior P (x) is obtained.

For the purpose of demodulation, the a priori probability of the
sequence x, P (xD = x), may be assumed fully factorized, i.e.,
P (x) =

∏
k P (xk) with c(k)

j being the j-th bit of the codeword la-
beling the k-th symbol of x. Applying this factorization of P (xD)
to the bitwise APP of ck in (19) and expressing the results in loga-
rithmic likelihood ratio (LLR) form yields the following:

L(cj) = ln

∑
∀x:cj=1 p̃(yD|x)

∏
k P (xk)∑

∀x:cj=0 p̃(yD|x)
∏
k P (xk)

(20)

This value then may be fed to a SISO decoder if the bits are coded.
The output LLR values from the decoder may be regarded as

an updated a priori information on c′ks. Using P (ck = c) =
exp(c·L(ck))
1+exp(L(ck)

the LLR values may further convert to a prior mass of
xD . Figure 2 shows the encapsulated block diagram of this archi-
tecture. This suggests an iterative algorithm that provides a general
framework for VB based joint channel estimation, demodulation
and decoding for a digital receiver. It is especially suitable to work
with modern random-like codes such as coded modulation (CM),
Turbo codes, LDPC codes and etc. since they are born suitable for
SISO decoding algorithms.

Pr(X)                                    P(X|Y)
VB Channel Estimation

&
 SISO Demodulation

Y                                       P(h,σ2|Y)

Pr_c                               Pr_c

SISO Decoder

Pr_u                              Pr_u

LLR

y

Fig. 2. Joint receiver scheme with VB block and SISO decoder: the
VB block takes as input the received symbols and prior distribution
of x and gives as output of approximate a posterior distribution of
xD . And the decoder takes as input from VB block the updated
distribution over xD and produces updated distribution of xD (in
the form of LLR).

5. IMPLEMENTATION AND SIMULATION RESULTS

In this section aspects of implementation is discussed and the use of
the bit-interleaved coded modulation (BICM) with Turbo coding is
presented to demonstrate the performance of the proposed scheme.

5.1. Calculation of p̃(yD|xD) and Lext(ck)

Following the formula for equalization in (20), the a-posteriori dis-
tribution p̃(yD|xD) needs to be evaluated first. In an CP-OFDM
system the frequency-selective channel is converted into a set of par-
allel narrow band channels. Hence, equalization and demodulation
can be performed per subcarrier and be arranged in an computation-
ally efficient manner. Let y, H and Cy respectively denote the re-
ceived symbol, narrow band channel coefficient and noise variance
on certain OFDM subcarrier, where subscript for indexing each sub-
carrier is dropped for convenience. Considering one subcarrier at a
time, the approximate a-posteriori probability for a received symbol
is given by

p̃(y|x) = 〈p(y|
√
NcHx, τ)〉q(H)q(τ) (21)

where the variational distribution Q(H) can be obtained easily from
Q(h). However the marginalization of p(y|

√
NcHx, τ) with re-

spect to q(H) and q(τ) cannot be evaluated analytically. We are
therefore forced to adopt the following approximations:

p̃(y|x) ≈ CN
(
y|
√
Nc〈H〉x,Cy|x

)
, (22)

where Cy|x = 〈τ〉−1 + Nc|x|2ΣH . In this approximation, a Dirac
delta function is used to replace the gamma distribution of τ in the
expectation. It may be interpreted as a type-II likelihood maximiza-
tion method used commonly in statistics. It is justified by noticing
that 1) the variance of Q(τ) given by c̃/d̃2 in typical SNR region is
in the order of 10−3, henceQ(τ) is heavily concentrated at the vicin-
ity of its mean 〈τ〉 and 2) the maximum likelihood approximation is
sufficiently accurate for only predictive purposes [3].
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Hence LLR values of cj in (20) can be rewritten as

Lej = ln

∑
x∈Xj,1

exp

(
−C−1

y|x|y −
√
Nc〈H〉x|2 +

∑n−1
i=0
i 6=j

bxi L
a
i

)
∑

x∈Xj,0

exp

(
−C−1

y|x|y −
√
Nc〈H〉x|2 +

∑n−1
i=0
i 6=j

bxi L
a
i

)
︸ ︷︷ ︸

L̃ext(ck|y)

+Lxj

(23)

whereXj,b is the subset of symbols fromX having the k-th bit equal
to b ∈ {0, 1}, with k = 0 . . . n−1, and bxj is the j-th bit labeling the
symbol x and Laj denotes a-priori LLR values of the j-th bit. The
quantity Lej , L̃ext(ck|y) is referred to as the extrinsic information
in literatures. However L̃ext(ck|y) differs from the conventional
extrinsic information in the way it is obtained: it is calculated using
the approximate a posterior probability p̃(yD|xD) obtained from the
current iteration of VB process.

5.2. Simulation Results

An CP-OFDM system operating at 1800Mhz is simulated to verify
the performance of the proposed algorithm. Each OFDM symbol
consists of Nc = 1024 subcarriers, cyclic-prefix of length Ncp =
144 which gives a total OFDM symbol duration ofN = Nc+Nc =
1168 time samples. The transmitted bits are coded using 1/3-rate
Turbo code specified in the 3GPP TS 36.212 technical specification.
The coded bits are then scrambled and mapped to QAM-4,16 or 64
complex valued symbols. For simplicity, it is also assumed that the
maximum channel length is same as the length of the CP for the
worst case scenario. The multipath channel have Npath = 6 sig-
nificant multipath component whose location τi in delay is chosen
from a uniform distribution and the complex delay gain hl is a com-
plex circularly symmetric Gaussian random variable. The number
of significant multipath components and their location are unknown
to the receiver. The performance of proposed algorithm is compared
side-by-side with a receiver working under decision directed scheme
with MMSE channel estimator. For all cases, the performance is
measured by bit-error rate (BER).

In Figure 3, the BER performance of the proposed algorithm is
compared side by side with conventional MMSE receiver for differ-
ent modulation orders. The 64-QAM, 16-QAM and 4-QAM mod-
ulation along with 1/3-rate Turbo code give overall bandwidth effi-
ciency η = 2, 1 1

3
and 2

3
bits/symbol, respectively. With the proposed

algorithm, about 2dB gain in SNR at BER = 10−6 is observed over
the conventional receiver working on MMSE principle for channel
estimation and equalization. Also the BER performance of the pro-
posed receiver given perfect CSI is also given to show the adverse
effect of channel mismatch to the performance. In this experiment,
updating steps involving variable h, τ and α is bypassed and true
CSI is passed to the equalizer. And iterations are performed between
the equalizer and the decoder. In this case, only 1dB or less of loss
in SNR is observed at 10−6.

In Figure 4 the behavior of the algorithms in terms of conver-
gence is revealed by carrying out simulated experiment with 64-
QAM modulation under AWGN channel with SNR = 8dB. This
empirical experiments show that for decoding purpose only the al-
gorithm converges after seven iterations. In higher SNR situations,
the algorithm converges under five iterations. In practice, adjusting
the maximum number of iterations provides a trade-off in computa-
tion complexity and error performance. Interestingly, after the BER
converges at the seventh iteration, the quality of the channel estimate
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Fig. 3. Bit Error Rate vs. SNR Performance of Hybrid Variational
Bayesian Receiver with 1/3-Rate Turbo Coding
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continues to improve significantly before approximately the 10th it-
eration. This indicates a mismatch in information extracting power
among all updating steps. Since the VB principle allows updating
variables in an arbitrary order this phenomenon indicates better up-
dating sequences may exist besides the round-robin scheme.

6. CONCLUSION

In this paper, by the use of graphical model and Bayesian varia-
tional method, the proposed algorithms for OFDM receiver jointly
performs channel estimation, detection and decoding in a unified
framework. Comparing to related prior works, the proposed algo-
rithm improves in various aspects both theoretically and practically.
In the seminal work on Turbo equalization [6], the CSI that the
equalizer operates on is assumed accurate, which is generally un-
realistic in practice. The proposed algorithm includes the channel
estimation stage into the iterative loop and carries the soft informa-
tion of the CSI onto the demodulation and decoding stages natu-
rally. It therefore provides more robust performance under practical
scenarios. Moreover, in [7] a variational message passing (VMP)
based receiver is proposed. However, since the VMP is only valid
for model with conjugate distributions, an Gaussian prior is assumed
for the transmitted symbols, which has been emphasized as untrue in
Section 4. This work also provides a more robust channel estimation
result by the use of a hierarchical graphical model which promotes a
succinct or sparse and hence robust solution on the CIR.
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