
COOPERATIVE OFF-POLICY PREDICTION OF MARKOV DECISION PROCESSES IN
ADAPTIVE NETWORKS

Sergio Valcarcel Macua† Jianshu Chen⋆ Santiago Zazo† Ali H. Sayed⋆

†
Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040, Spain

⋆
Department of Electrical Engineering, University of California, Los Angeles, CA 90095 USA

ABSTRACT

We apply diffusion strategies to propose a cooperative reinforcement

learning algorithm, in which agents in a network communicate with

their neighbors to improve predictions about their environment. The

algorithm is suitable to learn off-policy even in large state spaces.

We provide a mean-square-error performance analysis under con-

stant step-sizes. The gain of cooperation in the form of more sta-

bility and less bias and variance in the prediction error, is illustrated

in the context of a classical model. We show that the improvement

in performance is especially significant when the behavior policy of

the agents is different from the target policy under evaluation.

Index Terms— adaptive networks, dynamic programming, dif-

fusion strategies, gradient temporal difference, mean-square-error,

reinforcement learning.

1. INTRODUCTION

Consider the problem in which a network of autonomous agents col-

laborate to predict the response of their environment to their actions.

The network forms a connected graph (i.e., there is at least one path

between every pair of nodes) and communication is only allowed

within each neighborhood. The agents operate in an environment

that is modeled as a Markov Decision Process (MDP) [1]. The MDP

is characterized by a finite and countable set of states, S, a finite

and countable set of actions, A, and the kernel of transition prob-

abilities from one state to another given an action, P . Although

the agents can communicate with their neighbors, each agent is as-

sumed to operate a similar but independent MDP. Therefore, the

state transition probability at each agent k = 1 . . . N is only de-

termined by its own action and the previous state of its environment,

i.e., sk(i + 1) ∼ P(·|sk(i), ak(i)), where sk(i) ∈ S denotes the

state of the environment seen by agent k at time i, and ak(i) ∈ A
stands for its action.

We assume agents follow some stationary policy. A policy π is

a mapping π : S → Θ(A), where Θ(A) is the set of all probability
distributions over A. We denote by π(a, s) = P(a|s) the probabil-
ity of an agent choosing action a when it follows policy π and the

environment is at state s.
At every time step, there is a reward function, r : S × A ×

S → ℜ, which agents receive and which they want to predict. Let

r(i) = r
(
s(i − 1), a(i − 1), s(i)

)
denote the reward received by a

†This work was supported in part by the Spanish Ministry of Sci-
ence and Innovation grants TEC2009-14219-C03-01, TEC2010-21217-C02-
02-CR4HFDVL, in the program CONSOLIDER-INGENIO 2010 under the
grant CSD2008-00010 COMONSENS; and by the European Commission
under the grant FP7-ICT-2009-4-248894-WHERE-2. ⋆This work was sup-
ported in part by NSF grant CCF-1011918.

generic agent, for the transition from s(i − 1) to s(i), after taking
action a(i−1). In order to make predictions of the reward signal, we

use state general-value-functions (GVF), v : S → ℜ, which provide
the expected cumulative sum of the reward until the agent reaches a

state that marks the end of the prediction period, Ω. Introduce the

termination-indicator function γ : S → {0, 1}, which sets the time-

interval of the prediction period so that γ(s(i)) ≡ 0 indicates that

the agent has reached Ω at time i. We denote φ the random stopping

time at which the agent reaches the termination state Ω. Then, the

GVF for an arbitrary initial state ξ ∈ S is defined by:

v(ξ) , E

[
φ∑

i=0

γ
(
s(i)

)
·r
(
s(i),a(i), s(i+1)

)∣∣∣s(0) = ξ,a(i) ∼ π

]

(1)

where we are using the boldface notation to denote random variables,

and where the notation a(i) ∼ π means that we are interested in

the reward received by following the policy π, which we name the

target policy. The policy π may be different from the actual behavior

policy followed by the agents, and denoted by πb. The prediction

problem that corresponds to the situation π 6= πb is called off-policy

learning. We can see the functions r, π and γ are a grammar that

the agents use to ask questions about the expected future response of

their environment, and the GVF given by (1) is the answer to these

questions (see [2, 3, 4] and Section 4).

In many real applications, agents do not have access to the state,

but to a feature vector of the state. Also, in problems with very large

state-space dimension, even if the state of the system can be known

precisely, it is computationally more efficient to work with carefully

chosen features [2, 5] with much smaller dimensionM than |S|. Let
x : S → ℜM be some mapping from states to features. Then, we

denote xk,i = x(sk(i)) the M × 1 feature vector that represents

(maybe “roughly”) the state of the agent k at time i. Furthermore,

note that v(ξ) in (1) could be a nontrivial function of ξ. There-

fore, it would be efficient to approximate v(ξ) as a linear function

of x(ξ), say, x(ξ)Tω, where ω ∈ ℜM denotes a parameter vector.

In this way, we would only need to learn the parameter ω in order

to approximate (or learn) v(ξ). Such an approximation would pro-

vide good results if we carefully choose the mapping of features.

Stacking the output of (1), for every possible state ξ ∈ S, into the

vector v = col{v(ξ)} ∈ ℜ|S|, we express the linear approximation

as v ≈ Xω, where X ∈ ℜ|S|×M is a non-singular matrix that is

formed by stacking the feature row vectors xT (ξ), for every state

ξ ∈ S, on top of each other.

Now, the problem becomes that of seeking a parameter vector

ωo that is optimal in a certain sense using the available data that ar-

rive sequentially at each agent k (i.e., the tuples {xk,i, rk(i), γk(i)}
where rk(i) = r

(
sk(i−1), ak(i−1), sk(i)

)
and γk(i) = γ(sk(i))).

In the context of a single agent scenario (i.e., without co-

4539978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

operation), reference [6] proposed the mean-square-projected-

Bellman-error (MSPBE) as a performance criterion for finding

ω (see also [7, 8, 9]). However, the MSPBE depends on both

π and πb. Nevertheless, using the importance sampling weights,

τk(i) , π
(
ak(i), sk(i)

)
/πb

(
ak(i), sk(i)

)
, reference [10] showed

that the MSPBE can be expressed as a product of expectations,

which are taken with respect to the same distribution induced by πb.

Specifically, let ek,i = τk(i)xk,i, then the MSPBE can be expressed

as

Jk(ω) = E[δωk (i) · ek,i]
⊤
E[xk,ix

⊤
k,i]

−1
E[δωk (i) · ek,i] (2)

where δωk (i) is a scalar that estimates the error of the prediction:

δ
ω
k (i) , rk(i+ 1) + γk(i+ 1)x⊤

k,i+1ω − x⊤
k,iω (3)

In order to apply stochastic gradient descent to (2), we cannot

sample the three expected values at every iteration, since the random

quantities at each expectation would be correlated and their product

would be biased. One solution from [11] is to sample only one of the

expectations while tracking a long-term, quasi-stationary estimate of

the others. In particular, note that the gradient of (2) is given by

1

2
∇ωJk(ω) = E

[(
γk(i+ 1)xk,i+1 − xk,i

)
e
⊤
k,i

]
· θok (4)

where

θok = E

[
xk,ix

⊤
k,i

]−1

E [δωk (i) · ek,i] (5)

It was noticed in [6] that θok in (5) is similar to the solution of the

normal equations for linear least-mean-squares error estimation, so

it can be approached using the least-mean-squares (LMS) algorithm.

2. DIFFUSION ADAPTATION POLICY

In the context of networked agents, we propose to find the optimal

parameter vector ωo ∈ ℜM that minimizes the global cost:

Jglob(ω) =

N∑

k=1

Jk(ω) (6)

where Jk(ω), k = 1, . . . , N , are the individual MSPBE given in (2).
In order to minimize (6) in a cooperative and fully distributed man-
ner, we apply diffusion strategies [12, 13] on (4) and (5), obtaining
the diffusion-off-policy-gradient-temporal-difference (D-OGTD) al-
gorithm given in (7), with step-size parameters µ and η:

θ̂k,i =θk,i−1 − ηµ
(
xk,i−1x

⊤
k,i−1

θk,i−1 − δ
ωk,i−1

k
(i − 1)ek,i−1

)

ω̂k,i =ωk,i−1 − µ
(
(γk(i)xk,i − xk,i−1) · e

⊤
k,i−1

θk,i−1

)

θk,i =
∑

l∈Nk

blk θ̂l,i

ωk,i =
∑

l∈Nk

blkω̂l,i

(7)

where ωk,i denotes the local estimate at node k of ωo at time i.
In order to consider θk,i−1 constant during the update of ω̂k,i, the

latter must be updated at a lower speed than the former. In other

words, the step-size ratio, η, should satisfy η ≪ 1. Note that (7)

is the cooperative distributed extension of the single-agent GTD2

algorithm introduced in [6].

The matrix with the combination coefficients, B = [blk], is con-
strained by the network topology, in the sense that non-zero elements

can appear only at the locations corresponding to the active-links.

These elements can be freely chosen by the designer, as long as B is

a left stochastic matrix (i.e., the entries on each column of B add up

to one).

3. PERFORMANCE ANALYSIS

3.1. Data Model

To analyze the performance of the distributed solution (7), we ex-

tend the energy conservation arguments of [12, 14] to carry out a

mean-square-error (MSE) analysis; this is in contrast to the ordinary-

differential equations method used in [6, 10, 11, 15] for the variations

of the single-agent GTD algorithm. In particular, our analysis relies

on studying the evolution of the following pair of stochastic equa-

tions, which are of the same nature as the updates appearing in (7):

ψk,i = αk,i−1 − µ
(
Gk,iαk,i−1 + gk,i

)

αk,i =
∑

l∈Nk

blkψl,i
(8)

Let us introduce the matrices

Ck,i = xk,ix
⊤
k,i, Ak,i = ek,i

(
γk(i+ 1)xk,i+1 − xk,i

)⊤
(9)

and the variables:

αk,i =

[
θk,i
ωk,i

]
, ψk,i =

[
θ̂k,i
ω̂k,i

]
(10)

gk,i =

[
−ηek,i−1rk(i)

0

]
(11)

Gk,i =

(
ηCk,i−1 −ηAk,i−1

A⊤
k,i−1 0

)
(12)

such that αk,i, ψk,i, and gk,i are vectors of length 2M andGk,i is

a matrix of size 2M × 2M . Then, the model (8) is equivalent to (7).

We introduce C = Ck = E[Ck,i], A = Ak = E[Ak,i], G =
Gk = E[Gk,i] and g = gk = E[gk,i], which are the same for

every node k = 1, . . . , N . Then, for our data model we assume the

following conditions.

Assumption 1. Samples {xk,i−1, xk,i, rk(i), γk(i)} are assumed

to be drawn i.i.d. from the steady-state visitation probability distri-

bution of the underlying MDP (induced by πb).

Assumption 2. Matrices C and A are non-singular.

Assumption 1 is customary and it is reasonable if the Markov

chain of the state-process is mixing fast enough [16]; it renders

Gk,i and gk,i independent of αk,i−1. Assumption 2 guarantees

the existence and uniqueness of the fixed point of (8), αo, such that

Gαo + g = 0; it should be satisfied when the features capture the

structure of the state-space and the sample set is rich enough. Refer-

ence [6] proposed a slightly different set of aggregated variables for

studying the performance of the single-agent algorithm; it showed

that, under Assumption 2, the real part of the complex eigenvalues

of the coefficient matrix is always positive. It turns out that G is

a similarity transformation of the coefficient matrix used in [6], so

we conclude that the real part of the eigenvalues of G is also always

positive.

3.2. Convergence in the Mean

Introduce the following error quantities

ψ̃k,i , αo −ψk,i, α̃k,i , αo −αk,i (13)

In order to describe these relations more compactly we introduce the

following network error vectors of length 2MN :

ψ̃i , col{ψ̃1,i, . . . , ψ̃N,i}, α̃i , col{α̃1,i, . . . , α̃N,i} (14)

4540

Let B , B ⊗ I2M and Ri , diag{G1,i, . . . ,GN,i} be of

size 2MN × 2MN each, and Gi , col{G1,i, . . . ,GN,i} of

size 2MN × 2M . Finally, we aggregate the network signal

gi , col{g1,i, . . . , gN,i} into another vector of length 2MN ,

and introduce the network noise term ni , Giα
o + gi. Then,

the individual error recursions (13) lead to the following network

recursion:

α̃i = B⊤(I2MN − µRi

)
α̃i−1 + µB⊤

ni (15)

Since Eni = EGiα
o + Egi = 0, taking expectation of both sides

of (15), we obtain, under the assumption that α̃i−1 and Ri are in-

dependent of each other,

Eα̃i = B⊤(I2MN − µR
)
Eα̃i−1 (16)

where R , ERi. Recursion (16) converges to zero if the matrix

B⊤
(
I2MN − µR

)
= B⊤ ⊗

(
I2MN − µG

)
is stable. Let λm(·)

denote the m-th eigenvalue of a matrix. Since 0 < λm(B⊤) ≤ 1
for m = 1, . . . , N we only need to ensure that the spectral radius

of
(
I2MN − µG

)
is less than one. Note that G is not symmetric

and therefore, it can have complex eigenvalues. Then, the stability

condition can be expressed as

|1− µλm(G)| =

√
(1− µRe [λm(G)])2 + µ2Im [λm(G)]2 < 1

(17)

for m = 1, . . . , 2M . After some straightforward manipulations on

(17), we obtain the following quadratic inequality:

1− 2µRe [λm(G)] + µ2|λm(G)|2 < 1 (18)

Hence, since Re [λm(G)] is positive (see Assumption 2), we can

guarantee that the mean-error recursion (16) is stable and converges

to zero (i.e., limi→∞ Eα̃i = 0) when the step-size satisfies:

0 < µ < min
1≤m≤2M

2Re [λm(G)]

|λm(G)|2
(19)

3.3. Mean-Square Stability

To ensure the error has bounded fluctuations around the zero mean

value, we study the evolution and steady-state-value of the variance

E‖α̃i‖
2. For some symmetric non-negative definite weighting ma-

trix, Σ, taking ‖ · ‖2Σ of both sides of (15) and applying the expecta-

tion operator, we obtain the following variance relation

E‖α̃i‖
2
Σ = E‖α̃i−1‖

2
Σ′ + 2µ · b⊤Σ Eα̃i−1

+ µ2Tr
(
ΣB⊤RnB

)
(20)

where the weight matrix, Σ′, and the cross-correlation term, bΣ, take
the form:

Σ′ = (I2MN − µR⊤)BΣB⊤(I2MN − µR)

+ µ2
E

[
(R⊤

i −R⊤)BΣB⊤(Ri −R)
]

(21)

bΣ = E

[(
I2MN − µR⊤

i

)
BΣB⊤

ni

]
(22)

and the noise covariance matrix across the network is defined by

Rn , E

[
nin

⊤
i

]
= E

[
(Giα

o + gi)(Giα
o + gi)

⊤
]

(23)

Let σ = vec(Σ) denote the vectorization operation that stacks the

columns of a matrix Σ on top of each other. We can vectorize Σ′ in

(21), leading to σ′ , vec(Σ′) = Fσ, where

F ,

((
I2MN − µR⊤

)
B
)
⊗

((
I2MN − µR⊤

)
B
)

+ µ2
E

[((
R

⊤
i −R⊤

)
B
)
⊗

((
R

⊤
i −R⊤

)
B
)]

(24)

Therefore, we rewrite (20) in the following compact form, where we

are replacing the weighting matrices by their vector representations:

E‖α̃i‖
2
σ = E‖α̃i−1‖

2
Fσ + 2µ · σ⊤U · Eα̃i−1 + µ2h⊤σ (25)

where

U , E

[(
B⊤ (Giα

o + gi)
)
⊗

(
B⊤ (I2MN − µRi)

)]
(26)

h , vec
(
B⊤RnB

)
(27)

Note that the mean-square-error recursion in (25) is not a true recur-

sion because the norms are different. Moreover, it is coupled with

the mean-error recursion in (16). We can expand (25) into a state-

space model [12, 14, 17] that can be aggregated with (16).

Let L , 2MN and let p(x) be the characteristic polynomial

of the L2 × L2 matrix F . By the Cayley-Hamilton Theorem [17],

we know that every matrix satisfies its characteristic equation (i.e.

p(F) = 0), so we have

FL2

= −p0IL2 − p1F − . . .− pL2−1F
L2−1

(28)

Replacing σ with Fjσ, j = 0, . . . , L2 − 1, we obtain the following

state-space model:

E‖α̃i‖
2
σ

E‖α̃i‖
2

Fσ

...
E‖α̃i‖

2

FL2−1σ

︸ ︷︷ ︸
Wi

=

0 1 0 ··· 0

0 0 1 ··· 0

...
. . . 0

0 0 0 ··· 1

−p0 −p1 −p2 ··· −p
L2−1

︸ ︷︷ ︸
T

E‖α̃i−1‖2σ

E‖α̃i−1‖2Fσ

...
E‖α̃i−1‖2

FL2−1σ

︸ ︷︷ ︸
Wi−1

+ 2µ

σ⊤U

σ⊤FU

...
σ⊤FL2−1U

︸ ︷︷ ︸
Q

Eα̃i−1 + µ2

h⊤σ

h⊤Fσ

...
h⊤FL2−1σ

︸ ︷︷ ︸
Y

(29)

Finally, aggregating the mean-square-error recursion (29) with the

mean-error recursion (16), we obtain
[
Wi

Eα̃i

]
=

[
T 2µQ
0 B⊤(I2MN − µR)

] [
Wi−1

Eα̃i−1

]
+ µ2

[
Y
0

]
(30)

Observe that the stability of the joint recursion (30) is equivalent to

the stability of the matrices T and B⊤(I2MN − µR). We note from

(29) that T is in companion form, and it is known that its eigenvalues

are also eigenvalues of F . When the step-sizes are small enough, we

have the following approximation for F :

F ≈
((

I2MN − µR⊤
)
B
)
⊗

((
I2MN − µR⊤

)
B
)

=
(
B⊤ (I2MN − µR)

)⊤

⊗
(
B⊤ (I2MN − µR)

)⊤

(31)

which is stable if, and only if, B⊤ (I2MN − µR) is stable. There-
fore, sufficiently small step-sizes guarantee stability in the mean and

mean-square-error senses.

4541

3.4. Mean-Square Performance

If we take the limit of both sides of (25), and use the facts that

limi→∞ Eα̃i = 0 and limi→∞ E‖α̃i−1‖
2
Fσ = limi→∞ E‖α̃i‖

2
Fσ

we obtain

lim
i→∞

E‖α̃i‖
2
σ = µ2h⊤(I −F)−1σ (32)

Expression (32) is useful because it allows us to derive several per-

formance metrics through the proper selection of the free weighting

parameter vector σ (or, equivalently, the parameter matrix Σ). For

example, the network mean-square-deviation (MSD) is defined as

the average of the error of the nodes across the network:

MSD
network

, lim
i→∞

1

N

N∑

k=1

E‖α̃k,i‖
2 = E‖α̃i‖

2
1

N
I2MN

(33)

Choosing the weighting matrix as Σ = I2MN/N , we get:

MSD
network =

µ2

N
h⊤(I −F)−1

vec(I2MN) (34)

We can also obtain the MSD of any particular node k, as

MSDk , lim
i→∞

E‖α̃k,i‖
2

(35)

Introduce a block diagonal matrix Jk, of N × N blocks of size

2M × 2M each, such that all its blocks are zero except for block k
which is the identity matrix. Then, we obtain:

MSDk = µ2h⊤(I −F)−1
vec(Jk) (36)

4. SIMULATIONS

Consider the following example. An automated taxi is driving on

a motorway that is 14 miles long, from the suburbs to downtown.

During the journey, the taxi can exchange information with other

cars within its communication range. Every mile along the road,

there is an exit that the autopilot can choose to take or not. If the car

takes the exit, it can move towards the goal at a slower speed than

in the motorway, but it could also avoid a jam so that the total trip

time may be shorter. We model this example as a Markov chain with

|S| = 14 states, numbered inversely from the starting point (ξ = 13)
to the destination (Ω = 0) (this example is inspired by the classical

“Boyan chain” used as benchmark in [6], see Figure 1a). If the taxi

remains in the motorway, it could move to the goal at a high speed.

Whenever it takes an exit, it can also advance further before getting

back to the motorway, but at a slower speed. In either case, the taxi

can get stuck in the same state. When an exit is taken, the proba-

bility of moving towards the destination is high and constant, Pmov.

However, in the motorway, Pmov decays exponentially when getting

closer to the goal. The probability of getting stuck is 1 − Pmov. Let

us assume that all cars follow the same conservative behavior pol-

icy, opting for the motorway most of the time. Passengers may ask

whether it would be faster to take 80% of the exits. To answer this

question, the agent can build a GVF setting γ({13, . . . , 1}) = 1 and
γ(0) = 0, with r(i) = t(i), and with target policy π = [0.2, 0.8]
(i.e., P(a = motorway) = 0.2, P(a = exit) = 0.8 for every state).

The internal representation of the state is a vector ofM = 4 features
denoting the relative position to the destination. We study two cases:

in Figure 1b, all agents behave very conservatively, taking some ex-

its only 5% of the time (i.e., πb = [0.95, 0.05]); while in Figure 1c

agents become extremely conservative using the motorway 99% of

the time, which is still more biased (i.e., πb = [0.99, 0.01]).

We simulate a network of 10 nodes (with random topology and

average degree 6) plus 10 non-cooperative agents. We can expect

that when the agents follow a biased policy, many state-transitions

will not be sampled properly. This measurement noise leads to a

wrong estimate of the optimal parameter. Cooperation through dif-

fusion alleviates this error. In case (b), though diffusion shows an

improvement in the quality of the estimate, non-cooperative agents

are also able to make good predictions. It is in case (c) where the gain

from cooperation is greatly appreciated: while the bias and variance

(vertical bars) of the non-cooperative nodes diverge, collaborative

agents achieve a good, stable estimate of the value.

......13 12 11 2 1 0

(a) Markov chain of the taxi example

0 20 40
1

2

3

4

5

Episodes

M
S

P
B

E
1

/2
����������	
��

�
��
�������

���

���

�

���

���

���

(b) Biased: πb = [0.95, 0.05]

0 20 40
0

1

2

3

4
x 10

4

Episodes

M
S

P
B

E
1

/2

����������	
��

�
��
�������

�

�

�

�

�

� �� ��
�

(c) Very biased: πb = [0.99, 0.01]

Fig. 1. Taxi example. (a) State diagram, and (b)-(c) mean-square-

projected-Bellman-error (MPSBE) for a target policy π = [0.2, 0.8],
estimated by 10 cooperative versus 10 non-cooperative agents. In

(b), though we see some improvement in the cooperative agents,

non-cooperative agents are still good at finding the estimate. In

(c), when the behavior policy is very biased, there is a clear ben-

efit of diffusion: while non-cooperative nodes diverge, cooperative

agents achieve a good stable estimate. The feature vectors for states

13, 9, 5 and 1 are x(13) = [1, 0, 0, 0]⊤, x(9) = [0, 1, 0, 0]⊤,
x(5) = [0, 0, 1, 0]⊤ and x(1) = [0, 0, 0, 1]⊤ respectively, for the

rest of states, the features are obtained interpolating linearly between

these (i.e., x(2) = [0, 0, 1/4, 3/4]⊤, x(3) = [0, 0, 1/2, 1/2]⊤,
x4 = [0, 0, 3/4, 1/4]⊤, and so on). Step-sizes are constant µ = 0.1
and η = 10. The combination coefficients of the estimates, B, are

obtained using the Metropolis method [13]. Finally, Pmov(exit) =

0.8, ∀s ∈ S, and Pmov(s,motorway) = e
s−13

13 , s ∈ S.

5. CONCLUSIONS

We proposed a distributed diffusion strategy for off-policy learn-

ing and provided a mean-square-error analysis showing that suffi-

ciently small step-sizes guarantee convergence in the mean-square-

error sense. This result complements and extends the ODE analysis

of the original single-agent GTD algorithm, which requires dimin-

ishing step-sizes [10, 11, 15].

4542

6. REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete

Stochastic Dynamic Programming, John Wiley & Sons, Inc.,

New York, NY, USA, 1st edition, 1994.

[2] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski,

A. White, and D. Precup, “Horde: a scalable real-time archi-

tecture for learning knowledge from unsupervised sensorimo-

tor interaction,” in Proc. Int. Conf. on Autonomous Agents and

Multiagent Systems, Taipei, Taiwan, 2011, vol. 2, pp. 761–768.

[3] J. Modayil, A. White, and R. S. Sutton, “Multi-timescale nex-

ting in a reinforcement learning robot,” in From Animals to

Animats 12, T. Ziemke, C. Balkenius, and J. Hallam, Eds.,

vol. 7426 of Lecture Notes in Computer Science, pp. 299–309.

Springer Berlin Heidelberg, 2012.

[4] T. Degris and J. Modayil, “Scaling-up knowledge for a cog-

nizant robot,” in Notes of the AAAI Spring Symposium Series,

Palo Alto, CA, USA, March 2012.

[5] D. Silver, R. S. Sutton, and M. Müller, “Temporal-difference

search in computer go,” Machine Learning, vol. 87, pp. 183–

219, 2012.

[6] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,

C. Szepesvari, and E. Wiewiora, “Fast gradient-descent meth-

ods for temporal-difference learning with linear function ap-

proximation,” in Proc. Int. Conf. on Machine Learning, Mon-

treal, Quebec, Canada, 2009, pp. 993–1000.

[7] A. Antos, C. Szepesvari, and R. Munos, “Learning near-

optimal policies with bellman-residual minimization based fit-

ted policy iteration and a single sample path,” Machine Learn-

ing, vol. 71, pp. 89–129, 2008.

[8] B. Scherrer, “Should one compute the temporal difference fix

point or minimize the Bellman residual? the unified oblique

projection view,” in Proc. Int. Conf. on Machine Learning,

Haifa, Israel, June 2010, pp. 959–966, Omnipress.

[9] M. Geist and O. Pietquin, “Parametric value function approx-

imation: a unified view,” in Proc. IEEE Symp. on Adaptive

Dynamic Programming and Reinforcement Learning, Paris,

France, April 2011, pp. 9–16.

[10] H. R. Maei and R. S. Sutton, “GQ(lambda): A general gradi-

ent algorithm for temporal-difference prediction learning with

eligibility traces,” in Proc. Conf. on Artificial General Intelli-

gence, pp. 91–96. Lugano, Switzerland, 2010.

[11] R. S. Sutton, C. Szepesvari, and H. R. Maei, “A conver-

gent o(n) temporal-difference algorithm for off-policy learn-

ing with linear function approximation,” in Advances in Neural

Information Processing Systems 21, D. Koller, D. Schuurmans,

Y. Bengio, and L. Bottou, Eds., pp. 1609–1616. 2009.

[12] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for

distributed optimization and learning over networks,” IEEE

Transactions on Signal Processing, vol. 60, no. 8, pp. 4289–

4305, Aug. 2012.

[13] A. H. Sayed, “Diffusion adaptation over networks,” in E-

Reference Signal Processing, R. Chellapa and S. Theodoridis,

Eds. Elsevier, 2013. Also available as arXiv:1205.4220v1, May

2012.

[14] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS Strategies

for Distributed Estimation,” IEEE Transactions on Signal Pro-

cessing, vol. 58, no. 3, pp. 1035–1048, 2010.

[15] H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Sil-

ver, and R. S. Sutton, “Convergent temporal-difference learn-

ing with arbitrary smooth function approximation,” in Ad-

vances in Neural Information Processing Systems 22, Y. Ben-

gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Cu-

lotta, Eds., pp. 1204–1212. 2009.

[16] P. Diaconis, “The mathematics of mixing things up,” Journal

of Statistical Physics, vol. 144, no. 3, pp. 445–458, 2011.

[17] A. H. Sayed, Adaptive Filters, John Wiley & Sons, 2008.

4543

