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ABSTRACT

This paper addresses the problem of recovering sparse link
vectors with network topological constraints that is motivated
by network inference and tomography applications. We pro-
pose a novel framework called UCS-NT in the context of
compressive sensing for sparse recovery in networks. In order
to efficiently recover sparse specification of link vectors, we
construct a feasible measurement matrix using this framework
through connected paths. It is theoretically shown that, only
O(k log(n)) path measurements are sufficient for uniquely re-
covering any k-sparse link vector. Moreover, extensive simu-
lations demonstrate that this framework would converge to an
accurate solution for a wide class of networks.

Index Terms— Compressive Sensing, Network Monitor-
ing, Sparse Recovery, Network Tomography.

1. INTRODUCTION

The monitoring of link features such as delay and packet loss
rate, is an important task in network management. For exam-
ple, inferring the network utilization and performance spec-
ifications are attained via fault diagnosis and congestion de-
tection. However, direct measurement of each link in the net-
work can be operationally difficult and costly (mostly requir-
ing the cooperation of middle network nodes). In some ap-
plications, this collaboration is impossible due to protocol or
topological constraints. Hence, the topic of inferring network
internal characteristics from indirect end-to-end (aggregate)
measurements, called Network Tomography, becomes more
significant [1–7]. Often, it is desired to exploit the status of
each individual link with a total number of aggregate mea-
surements much smaller than the number of links in a net-
work. This is conceivable if we have prior knowledge about
some properties of links (i.e., sparsity) in the network. For
instance, we know that the number of congested links in net-
works is much smaller than the set of all links.

In this paper, we introduce a general framework called
“UCS-NT” (Unbiased Compressive Sensing for Network
Tomography) in the context of Compressive Sensing (CS).
CS [8–12] is a new research domain in signal processing

which tries to recover sparse signals from a smaller num-
ber of measurements or incomplete observations. Although,
most existing works in CS rely on the assumption that any
subset of values can be aggregated together [9], [11], this
assumption is not necessarily true in the network monitoring
problems where only links that induce a path or connected
sub-graph can be aggregated together in the same measure-
ment. There have only been a few recent works considering
network topological constraints in order to design a feasible
measurement matrix over networks (graphs) using compres-
sive sensing [13–17]. In general, those approaches are either
deterministic or random. To the best of our knowledge, there
are only two distinct random methods in recent literature.
In [16] the gossip algorithm which lacks a clear discussion
about the sufficient number of measurements is presented,
and in [17], additive measurements by using Random Walks
(RW) are adopted. However, In the latter method, node
selection in each measurement has a significant linear bias
towards high-degree nodes. Therefore, this method may be
inapplicable in many complex networks.

In this paper, we provide the first results on unbiased
compressive sensing for network inference by extracting the
sparse specifications in networks. Our specific contributions
in this work are summarized as follows:
(1) We provide a stochastic measurement construction over
network. The required number of UCS-NT measurements to
recover any k-sparse link vector is O(k log(n)) (section 4.2).
(2) We theoretically prove the null-space property for the
constructed measurement matrix from the UCS-NT. This
condition guarantees the correctness of matrix (section 4.1).
(3) To the best of our knowledge, this is the first paper that
provides an unbiased compressive sensing framework for
network inference. We evaluate its performance both theoret-
ically and experimentally (sections 3 and 5).

2. MODEL AND PROBLEM FORMULATION

We consider a network, expressed by an undirected graph
G = (V (G), E(G)), where V (G) = {v1, v2, ..., vn} denotes
the set of nodes (vertices) with cardinality |V (G)| = n, and
E(G) = {e1, e2, ..., eN} is the set of links (edges) with car-
dinality |E(G)| = N . Nodes communicate only over these
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links. Suppose every link i has a real value xi, and vector
x = (xi, i = 1, 2, ..., N) is associated with E(G). x is a
k-sparse vector if ∥x∥0 = k where ∥.∥0 denotes the number
of non-zero elements of x. Suppose that we have m end-to-
end measurements over the network (m ≪ N). We would
like to identify certain links (i.e., congested links with large
delays) from these measurements. Remember that the delay
over each measurement is the sum of delays over each link on
the connected path (route).

Let x be an N × 1 non-negative vector whose p-th entry
is the delay over link p, and y ∈ Rm denotes the vector of m
measurements whose q-th entry represents the total delay of a
connected path in a network. Let A be an m×N measurement
matrix with its i-th row corresponds to the i-th measurement.
Aij = 1 (i = 1, ...,m, j = 1, ..., N) if and only if the i-
th measurement includes link j and zero otherwise. We can
write in the compact form y = Ax. The measurement matrix
A can identify all k-sparse vectors if and only if it satisfies the
null-space property which Ax1 ̸= Ax2 for every two differ-
ent (at most) k-sparse vectors x1 and x2 [15]. It is important
that sparse recovery over networks using compressive sensing
has a closely related field called graph constrained group test-
ing [18–22]. Note that compressive sensing can perform bet-
ter than group testing based on the required number of mea-
surements [17]. Hence, we have used CS throughout this pa-
per. In addition, CS may abstractly model complex systems
even when the measurements from certain elements are not
available. Therefore, our approach can be potentially used in
other applications besides network tomography.

3. THE PROPOSED FRAMEWORK: UCS-NT

In this section, we propose an Unbiased Compressive Sens-
ing framework for Network Tomography (UCS-NT) which
is an efficient sparse recovery algorithm to recover any k-
sparse link vector in a sufficiently connected network. In
this approach, we construct a random measurement matrix
A to infer the link parameters (such as delay) inside a net-
work through end-to-end probing between nodes along some
random routes. The constructed measurement matrix A from
the UCS-NT holds the following properties, and we will the-
oretically prove the last two, in the next section. These con-
ditions are: (1) Each measurement is feasible in the sense
that the links of the same measurement correspond to a con-
nected path. This condition emphasizes on sparse recovery
with network topological constraints. (2) The constructed
measurement matrix A satisfies the null-space property for
the uniqueness of the sparse solution to the recovered vector.
(3) The generated measurement matrix A will be able to re-
cover any k-sparse link vector using only O(k log(n)) path
measurements. In the proposed method, in order to construct
each row of the measurement matrix A, the following steps
are iteratively performed:
(i) A start node is selected relative to P(v) as the current

node. (ii) The probabilities of current node and its neighbors
are calculated. (iii) Then, the next node is selected under
various conditions. More details can be seen in Algorithm 1.

Algorithm 1 Proposed Framework: UCS-NT

Input: graph G(V,E),m, t
1: m: number of measurements
2: t: number of measurement steps
3: P(Cn) = NULL /*Prob. of Current-node*/
4: for i = 1 → m do
5: Foreach node v ∈ V (G) do
6: P(v) = 1

|V (G)|−1
× (1− deg(v)

2|E(G)| )
7: end for
8: Cn = Select a node relative to P(v)
9: for j = 1 → t do

10: Foreach neighbors of Current-node (NCn) do
11: P(w) = 1

deg(Cn)
×min(1, deg(Cn)

deg(w)
)

12: end for
13: if P(Cn) = NULL then
14: P(Cn) = 1−

∑
w∈NCn

PUCSNT
w

15: end if
16: if ∃w; P(w) ≥ P(v = Cn) then
17: Find all the w with this property
18: Next-node = Select randomly one of these w
19: else if ∀w ∈ NCn; P(w) < P(v = Cn) then
20: Next-node = Select w relative to P(w)
21: else
22: Next-node = Trace back to the previous node
23: end if
24: Remove the link between Cn and Next-node
25: Current-node = Next-node
26: end for
27: end for
Output: feasible measurement matrix A

Here, P (w) is the probability of moving from current
node to node w where link (Cn,w) ∈ E(G); ∀{Cn,w} ∈
V (G). In the proposed method, we can avoid biasedness to-
wards high-degree nodes by selecting a good start node in
line (6), and also assigning different probabilities to the neigh-
bors of current node in line (11) of Algorithm 1. Moreover,
the basic idea is inspired by the Metropolis-Hasting MCMC
technique [23; 24], which is unbiased towards high-degree
nodes [25]. As a result, we have a uniform stationary distribu-
tion πUCSNT

v = 1
|V (G)| that leads us to construct an efficient

measurement matrix for unbiased compressive sensing. Note
that these measurements (walks) through the connected paths,
according to the assumptions in section 2, leads to feasibility
of the measurement matrix (the first condition).

3.1. Analysing the node degree bias

A basic, but very important property of networks (graphs) is
their node degree distribution pd, i.e., the fraction of nodes
with degree equal to d, for all d ≥ 0 [25]. In this part,
we analyse the observed node degree bias for measurements
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(walks), in particular for Random Walk (RW) used in [17] and
the UCS-NT used in this paper, over the graph G.

We have summarized some of the notations in Table 1.

Table 1: Summary of Key Notations.
deg(v) degree of node v
pd = 1

|V |
∑

v∈V 1{deg(v)=d} degree distribution in graph G
⟨d⟩ = ⟨pd⟩ =

∑
d d pd average node degree in graph G

qd expected observed degree distribution
⟨qd⟩ =

∑
d d qd expected observed average node degree

I) Random Walk (RW): Random walks have been widely
studied; see [26] for an excellent survey. RW is also used
in [17] to generate a measurement matrix in order to recover
any k-sparse link vector. In RW for any given connected and
aperiodic graph, the probability of being at a particular node
v converges to the stationary distribution πRW

v = deg(v)
2|E(G)| .

Therefore, the expected observed degree distribution qRW
d is:

qRW
d =

∑
v

πRW
v × 1{deg(v)=d} =

d

2|E|
pd|V | = d pd

⟨d⟩
(1)

Consequently, the expected observed average node degree is:

⟨qRW
d ⟩ =

∑
d

d qRW
d =

∑
d d

2 pd
⟨d⟩

=
⟨d2⟩
⟨d⟩

(2)

where ⟨d2⟩ denotes the average squared node degree in G.
According to Eq. (2), we can easily see the biasedness of RW
towards higher degree nodes, because ⟨qRW

d ⟩ > ⟨pd⟩.

II) UCS-NT (UCSNT): As we mentioned at the end of sec-
tion 3, the transition matrix PUCSNT

v,w resulted from Algo-
rithm 1 leads to a uniform stationary distribution πUCSNT

v =
1

|V (G)| , and consequently:

qUCSNT
d =

∑
v

πUCSNT
v × 1{deg(v)=d} = pd (3)

⟨qUCSNT
d ⟩ =

∑
d

d qUCSNT
d =

∑
d

d pd = ⟨d⟩ (4)

Based on Eq. (4), UCS-NT estimates the true mean and it
is unbiased, because it satisfies ⟨qUCSNT

d ⟩ = ⟨pd⟩. As it
is shown, RW is clearly biased towards high-degree nodes,
and it may be inapplicable to be used in measurement matrix
construction for inferencing networks with diverse degree
distributions, ranging from constant-degree (e.g., in regular
graphs), a distribution concentrated around the average value
(e.g., in Erdös-Rényi random graphs, or in well-balanced
peer-to-peer networks), to heavily right-skewed distributions
(as the case in World Wide Web, unstructured P2P, Internet
at the IP and Autonomous System level, and Online Social
Networks). Because in these networks, the congested links
are mostly located on the links pointing to the lower degree
nodes. On the contrary, the proposed UCS-NT framework
is the proper approach to solve the aforementioned problem.
Therefore, we offer the UCS-NT framework for analysing all
kinds of complex networks.

4. THEORETICAL ANALYSIS

In this section, we focus on the two other mentioned proper-
ties in section 3: The null-space property for the UCS-NT and
the required number of measurements for sparse recovery.

4.1. Correctness Condition for UCS-NT

Theorem 1. Let ym×1 = Am×N xN×1. Suppose that for
every subset of columns (say R) of the measurement matrix A
from the UCS-NT with |R| ≤ r (i.e. the number of columns is
no more than r), the corresponding sub-matrix AR includes
at least one row with a single non-zero element. Then the
unique recovery of any link vector x with regarding to y = Ax
is conceivable, if k < r+1

2 .

Proof. See [27].

4.2. minimum sufficient path measurements in UCS-NT

In this part, we indicate how many path measurements are
sufficient to recover any k-sparse link vector. First, we theo-
retically analyse the special class of networks called uniform
graphs and later in section 5, we will experimentally investi-
gate some other networks such as Erdös-Rényi (The simplest
variety of random graphs), Watts-Strogatz and G(4) (“Small
world” graphs with high clustering and low path lengths) and
Complete Graph. The undirected and sufficiently connected
graph G is named a (D, c) uniform graph where c is a con-
stant, and D < deg(v) < cD for all v ∈ V . Suppose that
a walk based on UCS-NT framework over the network has a
stationary distribution µ. The δ-mixing time of G is defined
as the smallest t′ such that a UCS-NT walk of length t′ start-
ing at any arbitrary node i ends up having a distribution µ′

such that ∥µ− µ′∥∞ ≤ δ where ∥.∥∞ denotes the supremum
norm. For δ = 1

(2cn)2 , we define T (n) as the δ-mixing time.
In order to ensure the unique recovery of any k-sparse

link vector with minimum number of UCS-NT measure-
ments, from [19], we have the following theorem,

Theorem 2. Consider a degree D0 = O(c2kT 2(n)), where
D ≥ D0 and t = O( nD

c3kT (n) ) such that t is the length of a
walk, then the following holds. Let Φ be a link set with (k−1)
links in the graph G, and let ℓ be a link not belonging to the
set Φ. Then define πℓ,Φ = Ω( 1

c4kT 2(n) ), where πℓ,Φ denotes
the probability that a walk passes through link ℓ, but misses
all the links from the link set Φ.

Suppose we construct m independent measurements
(walks) via UCS-NT framework satisfying the network topo-
logical constraints. Consider an arbitrary link set Φ′ ⊆ E(G)
with cardinality |Φ′| = k′ where 1 ≤ k′ ≤ k. We define πΦ′

as the probability that a UCS-NT walk visits one and only
one element from the set Φ′. Consider that πℓ,Φ holds for any
link ℓ and any link set Φ, with cardinality no bigger than k.
Therefore, as defined in Theorem 2, πΦ′ = Ω( 1

c4kT 2(n) )×k′,
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since the events of having a single non-zero element can
be divided into k′ disjoint events where each of them is the
event of having a single non-zero elements in one of the cor-
responding columns in Φ′. Then the probability that there
doesn’t exist any UCS-NT measurement (walk) with a single
non-zero element in the k′ columns corresponding to the links
from Φ′, can be represented by P = (1− πΦ′)m.

For the reason that there are
(
|E|
k′

)
combinations of

choosing the k′ links, the probability of existing one link set
Φ′ of |Φ′| = k′ without any single non-zero element row is:

Pk′,k ≤
(
|E|
k′

)
(1− πΦ′)m (5)

≤
(
n2

k′

)
(1− Ω(

k′

c4kT 2(n)
))m (6)

≤ e
k′(1+log(n2

k′ ))+m log(1−Ω( k′
c4kT2(n)

)) (7)

We want Pk′,k to be smaller than 1, hence, according to

Eq. (7), we have e
k′(1+log(n2

k′ ))+m log(1−Ω( k′
c4kT 2(n)

))
< 1.

Thus as long as m > max1≤k′≤k

(
− k′(1+log(n2

k′ ))

log(1−Ω( k′
c4kT2(n)

))

)
,

with probability 1 − o(1), the measurement matrix A con-
structed from UCS-NT framework guarantees recovering up
to k

2 -sparse link vectors according to Theorem 2. In fact,
m = O(c4T 2(n)k log(n)) path measurements suffices to re-
cover any k-sparse link vector, where c is a constant and T (n)
is the δ = 1

(2cn)2 mixing time of G. T (n) would be small
enough with increasing the number of nodes n. Therefore,
minimum measurements needed in the network topological
constrained problem is O(k log(n)) via UCS-NT framework
in compressive sensing while it is O(k2 log(n)) by group
testing [19]. Please refer to [27] for more precision analysis.

5. EXPERIMENTAL RESULTS

In this section, we provide numerical simulation results rep-
resenting the performance of the proposed framework. We
consider five different synthetic graphs: Two random graphs
derived from the Erdös-Rényi model with link existence prob-
abilities 0.2 and 0.5 (Erdos0.2, Erdos0.5) containing respec-
tively 100 and 70 nodes; one G(4) graph (G4) with 500 nodes
where each node is connected to its four closest neighbors;
one Complete Graph (CG) with 50 nodes, and one realization
of Watts-Strogatz model (Watts) with 500 nodes with Number
of neighbors m = 4, and rewiring probability p = 0.01.

In all of the test cases, we compare the UCS-NT with the
work in [17] which we call RW in short. This work is state-
of-the-art CS-based method for network tomography. The po-
sitions of sparsity (congested links) in these methods are as-
sumed fix and the network traffic does not change during the
time. Thus, they could not work over real-time communica-
tion, and extensions to such networks will be of future work.

Experiment 1 (Recovery error): Fig. 1 shows the recovery
percentage of ℓ1-minimization for different number of mea-
surements. In this experiment, the sparsity of link vector is
around 7%. As it is shown, the improvement of our frame-
work is more than 61% for G4, and 12% for Erdos0.2, com-
pared to RW. According to Algorithm 1, each measurement
traverses many more links than RW and a greater coverage
of network information is achieved with less number of mea-
surements. The improvement percentages for other graphs are
around 6% for CG, 4% in Erdos0.5 and 3% for Watts.
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Fig. 1: Recovery Percentage for Erdos0.2 and G(4)

Experiment 2 (Minimum measurements): In Fig. 2, we
plot the relationship between the sparsity of link vector and
the minimum number of measurements for a recovery per-
centage greater than 0.9. As it is clear, our work showed a
significant improvement in Erdos0.2 (17%) and Watts (15%).
These improvements are inspired by increasing the network
information coverage with less number of measurements. The
improvements in other graphs are around 3% for CG, 4% for
Erdos0.5, and 13% for G4.
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6. CONCLUSION

In this paper, we introduced a general framework called UCS-
NT in the context of compressive sensing for network tomog-
raphy. We used this framework to construct a feasible mea-
surement matrix under network topological constraints. By
theoretical analysis, we showed that O(k log(n)) UCS-NT
measurements are sufficient to uniquely recover any k-sparse
link vector. Also, we demonstrated that this framework would
be an accurate solution through extensive simulations.
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