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ABSTRACT

Accurate estimation of origin-to-destination (OD) traffic flows pro-
vides valuable input for network management tasks. However, lack
of flow-level observations as well as intentional and unintentional
anomalies pose major challenges toward achieving this goal. Lever-
aging the low intrinsic-dimensionality of OD flows and the sparse
nature of anomalies, this paper proposes a convex program with
nuclear-norm and ℓ1-norm regularization terms to estimate the nom-
inal and anomalous traffic components, using a small subset of (pos-
sibly anomalous) flow counts in addition to link counts. Analysis and
simulations confirm that the said estimator can exactly recover suf-
ficiently low-dimensional nominal traffic and sparse enough anoma-
lies when the routing matrix is column-incoherent, and an adequate
amount of flow counts are randomly sampled. The results offer valu-
able insights about the measurement types and network scenaria giv-
ing rise to accurate traffic estimation. Tests with real Internet data
corroborate the effectiveness of the novel estimator.

Index Terms— Sparsity, low rank, traffic estimation.

1. INTRODUCTION

Monitoring origin-to-destination (OD) traffic flows over operational
Internet Protocol (IP) networks is of paramount interest for quality-
of-service provisioning and capacity planning. Direct measurement
of all nominal OD flows however, is impossible due to the huge
number of OD pairs, lack of measurement infrastructure, and poten-
tial anomalies arising due to cyber-attacks and network failures [9].
Typically, the available data sources are: D1) link counts comprising
the superposition of OD flows per link; these counts can be readily
obtained using the single network management protocol (SNMP);
and D2) partial (possibly anomalous) flow counts recorded via Net-
Flow [9]. Traffic estimation is an arduous task because the number
of unknown OD flows far exceeds the number of observations.
Relation to prior work. Given D1 and/or D2 measurements, ample
research has been carried out to tackle the ill-posed traffic estima-
tion problem using different inference techniques that leverage traf-
fic features; see e.g., [7], [17] and references therein. Several studies
have demonstrated that nominal traffic exhibits low intrinsic dimen-
sionality, which is mainly due to common temporal patterns across
OD flows, and periodic behaviors across time [9]. Moreover, traffic
spikes (anomalies) are rare across time and flows, and tend to last for
short periods of time relative to the measurement horizon. Capitaliz-
ing on these traffic features, data of the type D1 were used recently
to unveil network anomalies with remarkable performance guaran-
tees [10]. Without OD flows however, the nominal flow-level traffic
cannot be identified using the approach of [10].
This paper’s contribution: Building on [10], the present work uti-
lizes data D1 jointly with data D2 to estimate the nominal and anoma-
lous components of OD flow traffic. The fresh look advocated here
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permeates benefits from rank minimization and compressive sensing
to traffic estimation. Leveraging the ability of the nuclear-norm and
the ℓ1-norm to recover low-rank and sparse components, a convex
program is formulated to estimate the unknowns. Exact recovery is
studied in the absence of noise, using a deterministic approach along
the lines of [4], [10]. Introducing the notion of incoherence (angle)
between a pair of subspaces, sufficient conditions are developed un-
der which the convex program can exactly recover the nominal and
anomalous traffic components.

The results yield valuable insights about network and measure-
ment characteristics giving rise to an accurate traffic estimation. In-
tuitively, one can expect accurate recovery if:
a) NetFlow measures sufficently many randomly selected OD flows;
b) the OD routing paths form a column-incoherent routing matrix;
c) the nominal traffic is sufficiently low dimensional; and
d) anomalies are sporadic enough.

In addition, the convex optimization approach to robust traffic
estimation opens the door for efficient in-network and online pro-
cessing along the lines of [11] and [12]. Simulations with syn-
thetic and real Internet data corroborate the effectiveness of the novel
scheme.
Notation: Operators (·)′ and ⊕ will denote transposition and sub-
space direct-sum, respectively; | · |, ‖x‖ will denote the cardinal-
ity of a set and the ℓ2-norm of a vector, respectively. For matrix
A ∈ Rn×p denotes ‖A‖F the Frobenious norm and ‖A‖∞ :=
maxi,j |aij | the ℓ∞-norm. The n × n identity matrix will be rep-
resented by In, and its i-th column by ei; likewise 0n×p := 0n0

′
p.

Define also the support set supp(A) := {(i, j) : aij 6= 0}.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a backbone IP network described by the directed graph
G(N ,L), where L and N denote the set of links and nodes (routers)
of cardinality |L| = L and |N | = N , respectively. A set of end-to-
end flows F with |F| = F traverse different OD pairs. In backbone
networks, the number of OD flows is much larger than the number
of physical links (F ≫ L). Per traffic-flow, single-path routing is
considered from each origin to its intended destination. Accordingly,
for a particular flow multiple links connecting the corresponding OD
node pair along a single path are chosen to carry the traffic. Let rl,f
denote the flow f ∈ F to link l ∈ L routing assignment taking the
value one whenever flow f traverses link l, and zero otherwise. The
routing matrix R := [rl,f ] ∈ {0, 1}L×F is assumed fixed and given.
Likewise, let xf,t denote the unknown traffic rate of flow f at time
t. The traffic carried over link l is then the superposition of flows
routed through link l, that is,

∑

f∈F rl,fxf,t.
It is not uncommon for some of the flow rates to experience

unusual sudden changes, which are termed traffic volume anomalies
and are typically due to the network failures, or cyber attacks [9].
With af,t denoting the unknown traffic volume anomaly of flow f at
time t, the measured traffic carried by link l at time t is then given
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by
yl,t =

∑

f∈F

rl,f (xf,t + af,t) + vl,t, t = 1, ..., T (1)

where vl,t accounts for the measurement errors. In IP networks,
link loads can be readily measured via SNMP supported by most
routers [9]. Introducing the matrices Y := [yl,t],V := [vl,t] ∈RL×T , X := [xf,t], and A := [af,t],∈ RF×T , link counts in (1)
can be expressed in a compact matrix form as

Y = R (X+A) +V. (2)

Matrices X and A contain, respectively, the nominal and anomalous
traffic flows over the time horizon of interest (T ). Inferring {X,A}
from the compressed measurements Y and knowledge of R is a dif-
ficult task, especially because L ≪ F .

Typically, additional data sources are utilized to enhance estima-
tion accuracy. A useful such source is the direct flow-level measure-
ments expressed per flow f as

zf,t = xf,t + af,t +wf,t, t = 1, ..., T (3)

where wf,t accounts for measurement errors. The flow traffic (3)
is sampled via NetFlow [9] at each origin node. However, due to
the high cost of NetFlow one can only partially measure (3) [9]. To
account for missing flow-level data, collect the available pairs (f, t)
in the set Ω ∈ [1, 2, ..., F ]× [1, 2, ..., T ]. Introduce also the matrices
ZΩ := [zf,t],WΩ := [wf,t] ∈ RF×T , where zf,t = wf,t = 0 for
(f, t) /∈ Ω, and associate the sampling operator PΩ with the set Ω,
which assigns entries of its matrix argument not in Ω equal to zero,
and keeps the rest unchanged. The flow counts in (3) can then be
compactly written as

ZΩ = PΩ (X+A) +WΩ. (4)

Common temporal patterns among traffic flows in addition to their
periodic behavior, render most rows (correspondingly columns) of
X linearly dependent, and thus X typically exhibits low rank [9].
Anomalies on the other hand are expected to occur sporadically over
time, and only last for short periods relative to the (possibly long)
measurement interval [1, T ]. In addition, only a small fraction of
flows are supposed to be anomalous at a any given time instant. This
renders the matrix A sparse across both rows and columns.

Given the link counts Y obeying (2) with the partial flow-counts
ZΩ adhering to (4), and with {R,Ω} known, this paper aims at accu-
rately estimating the unknown low-rank nominal and sparse anoma-
lous traffic components, namely X and A.

3. TRAFFIC AND ANOMALY MATRIX RECOVERY

Consider first the noiseless scenario, i.e., V = 0L×T and WΩ =
0F×T . A natural estimator accounting for the low rank of X and
the sparsity of A will be sought to minimize the rank of X, and the
number of nonzero entries of A measured by its ℓ0-(pseudo) norm.
Unfortunately, both rank and ℓ0-norm minimization problems are in
general NP-hard [14, 15]. The nuclear-norm ‖X‖∗ :=

∑

k σk(X),
where σk(X) denotes the k-th singular value of X, and the ℓ1-norm
‖A‖1 :=

∑

f,t |af,t| are typically adopted as convex surrogates [15,
1]. Accordingly, one solves

(P1) min
{X,A}

‖X‖∗ + λ‖A‖1

s.t. Y = R (X+A) , ZΩ = PΩ (X+A)

where λ ≥ 0 is the sparsity-controlling parameter.

It is worth mentioning that (P1) subsumes several important spe-
cial cases, which yield accurate recovery of {X,A} [10, 4]. In the
absence of flow counts for instance, exact recovery of the sparse
matrix A from link loads is reported in [10]. The key to this is the
sparsity present, which enables recovery from compressed linear-
measurements. However, the (possibly huge) nullspace of R chal-
lenges identifiability of the nominal traffic matrix X, as validated
also via extensive simulated tests. As another instance, suppose only
flow counts are available, in which case (P1) boils down to the ro-
bust principal component analysis with missing data, for which one
can exactly recover the low-rank component [4]. Instrumental role
in this case is played by the dependencies among entries of the low-
rank component, reflected in the observations. Indeed, the anomaly
matrix is not recoverable since observed entries do not convey any
information about the unobserved anomalies.

These considerations regarding recovery in the aforementioned
special cases, makes one hopeful to retrieve X and A via (P1). Note
that [6] has recently studied the recovery of compressed low-rank-
plus-sparse matrices, where the compression is an orthogonal pro-
jection onto a low-dimensional subspace. However, it does not nec-
essarily subsume the present model since in general the latter may
not entail an orthogonal projection of a low-rank-plus-sparse matrix
onto a subspace. In the sequel, the recovery performance of (P1) is
analyzed.

4. LOCAL IDENTIFIABILITY

Let X0 and A0 be the true low-rank and sparse matrices of interest
with r := rank(X0) and s := ‖A0‖0. The first issue to address
is identifiability, which asserts that there is a unique pair {X0,A0}
fulfilling the data constraints: d1) Y = R(X0+A0) and d2) ZΩ =
PΩ(X0 + A0). Apparently, if multiple solutions exist, one cannot
hope finding {X0,A0}. Before examining this issue, introduce the
subspaces: s1) NR := {H : RH = 0L×T } as the nullspace of the
linear operator R, and s2) NΩ := {H ∈ RF×T : supp(H) ⊆ Ω⊥}
as the nullspace of the linear operator PΩ(.) [Ω⊥ is the complement
of Ω]. Now, if there exist perturbations {H1,H2} with H1 +H2 ∈
NR∩NΩ so that X0+H1 and A0+H2 are still low-rank and sparse,
one may pick the pair {X0 +H1,A0 +H2} as another legitimate
solution. This section aims at resolving such identifiability issues.

Let U0Σ0V
′
0 denote the singular value decomposition (SVD)

of X0, and consider the subspaces: s3) ΦX0
:= {Z ∈ RF×T : Z =

U0W
′
1 + W2V

′
0, W1 ∈ RT×r, W2 ∈ RF×r} of matrices in

either the column or row space of X0; s4) ΩA0
:= {H ∈ RF×T :

supp(H) ⊆ supp(A0)} of matrices whose support is contained in
that of A0. Noteworthy properties of these subspaces are: i) both
ΦX0

and ΩA0
⊂ RF×T , hence it is possible to directly compare

elements from them; ii) X0 ∈ ΦX0
and A0 ∈ ΩA0

; and iii) if
Z ∈ Φ⊥

X0
is added to X0, then rank(Z +X0) > r, and likewise if

Z ∈ Ω⊥ is added to A0, then |supp(A0 + Z)| > s.
Suppose temporarily that the subspaces ΦX0

and ΩA0
are also

known. This extra piece of information helps identifiability based on
data d1) and d2), since the potentially troublesome solutions

Υ1 := {(X0 +H1,A0 +H2) : H1 +H2 ∈ NR ∩NΩ} (5)

are restricted to a smaller set. If (X0+H1,A0+H2) /∈ Υ2, where

Υ2 := {(X0 +H1,A0 +H2) : H1 ∈ ΦX0
, H2 ∈ ΩA0

} (6)

that candidate solution is not admissible since it is known a priori
that X0 ∈ ΦX0

and A0 ∈ ΩA0
. This notion of exploiting additional

knowledge to assure uniqueness is known as local identifiability [4].
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Global identifiability from d1) and d2) is not guaranteed. However,
local identifiability will become essential later on to establish the
main result. Under these assumptions, the following Lemma puts
forth the necessary and sufficient conditions for local identifiability.

Lemma 1. Matrices {X0,A0} satisfy d1) and d2) uniquely if and
only if: c1) ΦX0

∩ ΩA0
= {0}; and, c2) Υ1 ∩Υ2 = {0}.1

Condition c1) implies that for the solutions in Υ2 to be admissi-
ble, H1+H2 must belong to the subspace ΦX0

⊕ΩA0
. Accordingly,

c2) holds if

NR ∩ NΩ ∩ (ΦX0
⊕ ΩA0

) = {0}. (7)

Notice that c1) appears also in the context of low-rank-plus-sparse
recovery results in [2, 4]. However, c2) is unique to the setting here.
It captures the impact of the overlap between nullspace of R and the
sampling operator PΩ(.). Finding simpler sufficient conditions to
assure c1) and c2) is studied next.

4.1. Incoherence Measures

The overlap between any pair of subspaces {ΦX0
,ΩA0

,NR,NΩ}
plays a crucial role in identifiability and exact recovery as seen e.g.,
from Lemma 1. To quantify the overlap of the subspaces e.g., ΦX0

and ΩA0
, consider the incoherence parameter

µ(ΦX0
,ΩA0

) := max
X∈ΩA0

‖X‖F=1

‖PΦX0
(X)‖F . (8)

Observe that µ(ΦX0
,ΩA0

) ∈ [0, 1]. The lower bound is achieved
when ΦX0

and ΩA0
are orthogonal, whereas the upperbound is at-

tained when ΦX0
∩ΩA0

contains a nonzero element. To gain further
geometric intuition, µ(ΦX0

,ΩA0
) represents the cosine of the angle

between subspaces when ΦX0
∩ ΩA0

= {0} [5]. Small values of
µ(ΦX0

,ΩA0
) indicate enough separation between ΦX0

and ΩA0
,

and thus less chance of ambiguity when discerning X0 from A0.
It will be seen later that satisfying c1) requires µ(ΦX0

,ΩA0
) <

1. In addition, to ensure c2) one needs the incoherence parameter
µ(NR ∩NΩ,ΦX0

⊕ΩA0
) < 1. In fact, µ(NR ∩NΩ,ΦX0

⊕ΩA0
)

captures the ambiguity inherent to the nullspace of the compression
and sampling operators. It depends on all subspaces s1)-s4), and
it is desirable to express it in terms of the incoherence of different
subspace pairs, namely µ(NR,ΩA0

), µ(NR,ΦX0
), µ(NΩ,ΩA0

),
and µ(NΩ,ΦX0

). This is formalized in the next claim.

Proposition 1. Assume that µ(ΩA0
,ΦX0

) < 1. If either dim(NR∩
NΩ) = 0; or, dim(NR ∩NΩ) ≥ 1 and

ξ :=
[µ(NR,ΦX0

)µ(NΩ,ΦX0
) + µ(NR,ΩA0

)µ(NΩ,ΩA0
)

1− µ(ΩA0
,ΦX0

)

]1/2

< 1

hold, then ΦX0
∩ΩA0

= {0} and NR∩NΩ∩(ΦX0
⊕ΩA0

) = {0}.

Apparently, small values of µ(NR,ΩA0
) and µ(NΩ,ΦX0

) can
render ξ small enough. In fact, the incoherence µ(NR,ΩA0

) mea-
sures whether NR contains sparse elements, and it is tightly related
to the incoherence among the sparse column-subsets of R. Specifi-
cally, if RR

′ = I, the incoherence reduces to the restricted isometry
constant of R [1]. Moreover, µ(NΩ,ΦX0

) measures whether the
low-rank matrices fall into the nullspace of the sampling operator,
which is linked to the incoherence metrics introduced in the context
of matrix completion; see e.g., [3]. It is also worth mentioning that a
wide class of matrices resulting in small incoherence µ(NR,ΩA0

),
µ(NΩ,ΦX0

) and µ(ΩA0
,ΦX0

) are provided in [1], [3], [2], which
give rise to a sufficiently small value of ξ.

1The proofs in this work will be provided in the journal version [13]

5. EXACT RECOVERY VIA CONVEX OPTIMIZATION

Besides µ(ΩA0
,ΦX0

) and ξ, there are other incoherence measures
which play an important role in the conditions for exact recovery.
These measures are introduced to avoid ambiguity when the (feasi-
ble) perturbations H1 and H2 do not necessarily belong to the sub-
spaces ΦX0

and ΩA0
, respectively. Before moving on, it is worth

noting that these measures resemble the ones for matrix completion
and decomposition problems; see e.g., [2, 3]. For instance, con-
sider a feasible solution {X0 + ai,jeie

′
j ,A0 + ai,jeie

′
j}, where

(i, j) /∈ supp(A0) and thus ai,jeie
′
j /∈ ΩA0

. It may happen that
ai,jeie

′
j ∈ ΦX0

and rank(X0 + ai,jeie
′
j) = rank(X0)− 1, while

‖A0 − ai,jeie
′
j‖0 = ‖A0‖0 + 1, challenging identifiability when

ΦX0
and ΩA0

are unknown. Similar complications arise if X0 has
a sparse row space that can be confused with the row space of A0.
These issues motivate defining

γ(U0) := max
i

‖PUei‖, γ(V0) := max
i

‖PV ei‖

where PU := U0U
′
0[PV := V0V

′
0] are the projectors onto the

column [row] space of X0. Notice that γ(U0), γ(V0) ∈ [0, 1]. The
maximum of γ(U0)[γ(V0)] is attained when ei is in the column
[row] space of X0 for some i. Small values of γ(U0)[γ(V0)] imply
that the column[row] spaces of X0 do not contain sparse vectors,
respectively.

Another identifiability instance arises when X0 is sparse, in which
case each column of X0 is spanned by a few canonical basis vectors.
Consider the parameter

γ(U0,V0) := ‖U0V
′
0‖∞ = max

i,j
|ei

′
U0V0ej |.

A small value of γ(U0,V0) indicates that each column of X0 is
spanned by sufficiently many canonical basis vectors. It is worth not-
ing that γ(U0,V0) can be bounded in terms of γ(U0) and γ(V0),
but it is kept here for the sake of generality.

From c2) in Lemma 1 it is evident that the dimension of the
nullspace NR∩NΩ is critical for identifiability. In essence, the lower
dim(NR ∩NΩ), the higher is the chance of exact reconstruction. In
order to quantify the size of the nullspace, define

τ (NR,NΩ) := max
X∈NR∩NΩ

‖X‖F=1

‖X‖∞ (9)

which will appear later in the exact recovery conditions. All ele-
ments are now on place to state the main result in the next section.

5.1. Main Result

Theorem 5.1. Consider given matrices Y ∈ RL×T , and R ∈RL×F obeying Y = R(X0 + A0) together with the partial ma-
trix ZΩ ∈ RF×T , sampled from the given set Ω, adhering to ZΩ =
PΩ(X0 + A0). Suppose that every column of A0 has at most
k nonzero elements, and let X0 := U0Σ0V

′
0, r := rank(X0),

s := ‖A0‖0. If the following conditions
I) λmax > λmin

II) θ := 1− µ− 2ξ2 > 0

III) ν := 1− µ2 − η
√
sµ− βξ

√
s > 0

IV) κ := k + (
√
s− k)µ2 + αξ

√
s > 0

hold, where µ := µ(ΩA0
,ΦX0

), η := γ(U0) + γ(V0), τ :=
τ (NR,NΩ), and γ := γ(U0,V0),

α :=
(1 + µ)[1− µ+ ξ]

θ
, β :=

(1 + µ)[τ (1− µ) + ηξ]

θ
,
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Fig. 1. Relative error for various values of rank (r) and sparsity level
(s = ρFT ) when F = T = 210, L = F/2, and π = 0.1. White
represents exact recovery (e ≈ 0) while black represents e ≈ 1.

and

λmax :=
1− µ2 −√

r(µ− αξ)

ν
, λmin :=

γ +
√
r(ηγµ2 + β)

κ
,

then there exists λmin ≤ λ ≤ λmax for which the convex program
(P1) exactly recovers {X0,A0}.

Satisfaction of the conditions in Theorem 5.1 hinges upon the in-
coherence parameters {µ, γ, η, ξ, τ} whose sufficiently small values
fulfil I)-III). In fact, these parameters are increasing functions of the
rank r and the sparsity level s. In particular, {µ, γ, η}, capturing the
ambiguity of the additive components X0 and A0, are known to be
small enough for small values of {r, s, k} [3, 4]. Regarding ξ, recall
that it is an increasing function of µ(ΩA0

,NR) and µ(ΦX0
,NΩ).

Similar to µ(ΦX0
,ΩA0

), the parameter µ(ΦX0
,NΩ) takes a small

value when NetFlow samples an adequately large subset of OD flows
uniformly at random. Moreover, in large-scale networks with dis-
tant OD node pairs, and routing paths that are sufficiently ‘spread-
out’, the sparse column-subsets of R tend to be incoherent, and thus
µ(ΩA0

,NR) takes a small value. Likewise, for sufficiently many
NetFlow samples and column-incoherent routing matrices, τ takes a
small value.

Remark 1 (Satisfiability). Notice that I)-III) in Theorem 5.1 are ex-
pressible in terms of the angle between subspaces s1)-s4). In general,
they are NP-hard to verify. Introducing a class of (possibly random)
traffic matrices {X0,A0} and realistic network settings giving rise
to a desirable routing matrix R is the subject of ongoing research
and will be detailed in an extended report.

6. NUMERICAL TESTS

Performance of the (P1) solver is assessed in this section via com-
puter simulations.
Exact recovery. Data matrix Y is generated according to Y =
V

′
R(X0 + A0), where VR ∈ RF×L comprises the right singular

vectors of the binary {0, 1}-valued random matrix R = URΣRV
′
R

with i.i.d. entries equal to one with probability 1/2. The low-rank
component X0 is produced from the bilinear factorization X0 =
WZ

′, where W and Z are L× r and T × r matrices with i.i.d. en-
tries drawn from Gaussian distributions N (0, 1/L) and N (0, 1/T ),
respectively. Every entry of A0 is randomly drawn from the set
{−1, 0, 1} with Pr(ai,j = −1) = Pr(ai,j = 1) = ρ/2. Likewise,
the partial flow-traffic matrix ZΩ is generated according to ZΩ =
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Fig. 2. Relative estimation error versus NetFlow sampling rate.
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Fig. 3. Performance for representative flows of Internet-2 network
when π = 0.1. (a) Estimated (red) versus true (blue) nominal traffic.
(b) Estimated (circle markers) versus true (solid) anomalous traffic.

Ω ⊙ (X0 + A0), where ⊙ is the element-wise product. Entries of
the binary {0, 1}-valued sampling matrix Ω ∈ RF×T are also i.i.d.
taking the value one with probability π. Set also T = F = 210.
To demonstrate that (P1) is capable of recovering the exact values of
{X0,A0}, the optimization problem is solved for a wide range of
values of (r, s). Let (X̂, Â) denote the solution obtained via (P1) for
a suitable value of λ. Fig. 1 depicts the relative error in recovering
(X0,A0), namely e := ‖Â−A0‖F /‖A0‖F+‖X̂−X0‖F /‖X0‖F
for various values of (r, s). It is apparent that (P1) succeeds in recov-
ering {X0,A0} for sufficiently sparse A0 and low-rank X0 from
the observed data {Y,ZΩ}.
Real network data tests. Real data including OD-flow traffic-levels
are collected from the operation of the Internet-2 network (Internet
backbone network across USA) [18]. For further details about the
setup refer to [12]. To study the impact of NetFlow sampling rate on
the recovery performance, Fig. 2 depicts relative estimation error e
for various amounts of NetFlow data. The candidate OD flows are
selected independently with probability π. Here, the anomaly esti-
mation error refers to ‖Â−A0‖F /‖A0‖F (likewise, for the traffic
estimation error). Naturally, the higher the sampling rate, the bet-
ter estimation accuracy is attained. The improvement is seen to be
more pronounced for recovering the nominal traffic relative to the
anomalous traffic, so as for large π the anomalous-traffic estimation-
error bottlenecks the total estimation error. Interestingly, when link
loads are utilized alone (π = 0) to estimate {X0,A0}, adding 10%
NetFlow samples improves the nominal-traffic estimation-error by
45%, and the anomalous-traffic estimation-error by 18%. This ob-
servation in turn corroborates the effectiveness of exploiting partial
NetFlow data to improve the traffic estimation accuracy. For an in-
stance of π = 0.1, the true and estimated nominal and anomalous
traffic time-series for representative flows are depicted in Fig. 3.
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