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ABSTRACT

Non-negative matrix factorization (NMF) has found numerous ap-
plications, due to its ability to provide interpretable decompositions.
Perhaps surprisingly, existing results regarding its uniqueness prop-
erties are rather limited, and there is much room for improvement in
terms of algorithms as well. Uniqueness and computational aspects
of NMF are revisited here from a geometrical point of view. Both
symmetric and asymmetric NMF are considered, the former being
tantamount to element-wise non-negative square-root factorization
of positive semidefinite matrices. New and insightful uniqueness
results are derived, e.g., it is shown that a sufficient condition for
uniqueness is that the conic hull of the latent factors is a superset of
a particular second-order cone. Checking this is shown to be NP-
complete; yet it offers insights on latent sparsity, as is also shown
in a new necessary condition, to a smaller extent. On the computa-
tional side, a new efficient algorithm for symmetric NMF is proposed
which uses Procrustes rotations. Simulation results show promising
performance with respect to the state-of-art. The new algorithm is
also applied to a clustering problem for co-authorship data, yielding
meaningful and interpretable results.

Index Terms— Non-negative Matrix Factorization, Unique-
ness, Simplicial cone, Dual cone, Procrustes rotation

1. INTRODUCTION

Non-negative matrix factorization (NMF) S = WH with W, H
having non-negative elements, was first proposed by Paatero and
Tapper [1] who called it positive matrix factorization. Lee and Se-
ung [2] first discovered a very interesting property of NMF when
applied to image processing, namely that “NMF is able to learn the
parts of objects” – meaning, it tends to decompose objects in mean-
ingful parts. Lee and Seung [2] popularized NMF, which quickly
found numerous other applications in diverse disciplines – see [3]
and references therein.

NMF has been such a success story across disciplines because
non-negativity is a valid constraint in so many applications, and
NMF often provides meaningful / interpretable results, and some-
times even ‘correct’ results – that is, it yields the true latent factors
W, H. Uniqueness of NMF is tantamount to the question of whether
or not these true latent factors are the only interpretation of the data,
or alternative ones exist. Donoho and Stodden [4] were the first to
study the uniqueness of NMF, and they provided a sufficient condi-
tion showing that if W follows the complete factorial sampling rule
and H follows the separability rule, then the NMF of their product is
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unique. Laurberg et al. [5] loosened the sufficient condition to what
they called a strongly boundary close W and sufficiently spread HT .
Essentially, these two latter conditions require the columns of H to
contain scaled versions of all columns of the identity matrix, which
is a very strict condition. Laurberg et al. also gave a necessary con-
dition called boundary close.

The symmetric version of NMF (P = WWT with W having
non-negative elements) is relatively less studied [6–8]. He et al. [8]
derived three algorithms for symmetric NMF – the multiplicative up-
date (see also [7]), α-SNMF and β-SNMF, and simulations showed
that the latter two outperform other alternatives.
• Notation: Ai,: is the i-th row of A, and A:,j is the j-th column
of A. A set is denoted by a calligraphic uppercase letter, e.g., A.
Rn

+ = {x|xi ≥ 0, i = 1, · · · , n} is the positive orthant in Rn.
ei,1,0 are the i-th standard coordinate vector, all ones vector, and
the zero vector, respectively. Inequality marks represent element-
wise inequalities, whether applied to scalars, vectors or matrices.
Asymmetric NMF is written out as S = WH, where S is I×J , W
is I×K and H is K×J . Symmetric NMF is written as S = WWT ,
where S is I× I symmetric positive semi-definite, W is I×K. We
focus on the low-rank case, so K < min(I, J). Without loss of
generality, we assume there are no 0 columns or rows in any matrix.
If this happens, we can simply delete them first.
• Preliminaries: We briefly review some prerequisites from convex
analysis; see [9, 10] for further background.

Definition 1 (Polyhedral Cone). A polyhedral cone K is a set that
is both a polyhedron and a cone.

There are two ways to describe a polyhedral cone: 1) by tak-
ing the intersection of a finite number of halfspaces K = {x ∈
Rn|Ax ≥ 0}. If Ai,:x ≥ 0 is not a redundant constraint, then
K∩{x|Ai,:x = 0} is called a facet ofK; 2) by taking the conic hull
of a finite number of vectors K = {x = Bλ|λ ≥ 0} = cone(B).
If B:,i cannot be represented by the conic combinations of the other
columns of B, then it is called an extreme ray of K.

Definition 2 (Simplicial Cone). A simplicial cone is a polyhedral
cone such that all of its extreme rays are linearly independent.

If K = {x = Bλ|λ ≥ 0} = cone(B) is a simplicial cone, then
for every element x ∈ K, there is a unique corresponding λ that
indicates how to conically combine the extreme rays to generate x.
For general polyhedral cones, this combination is in most cases not
unique.

Definition 3 (Dual Cone). The dual cone of a setK, denoted byK∗,
is defined as K∗ = {y|xTy ≥ 0, ∀x ∈ K}.

Some important properties of dual cones are as follows (cf. Lau-
rberg et al. [5]): 1) If A = cone(A), then A∗ = {x|ATx ≥ 0}; 2)
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If A = cone(AT ), where A is invertible, then A∗ = cone(A−1);
3) If A and B are convex cones, and A ⊆ B, then B∗ ⊆ A∗.

Here is an example of a cone and its dual cone, which will be
useful later.

Example 1. [4] Define the second-order cone in Rn: C =
{x|xT1 ≥

√
n− 1∥x∥2}. Its dual cone is another second-order

cone C∗ = {x|xT1 ≥ ∥x∥2}

The reason we are interested in C and its dual cone is because
they have a very special relationship with the non-negative orthant:
C ⊆ Rn

+ ⊆ C∗. Moreover, this relation is tight, as stated in the
following lemma (proof skipped due to space considerations – will
be provided in the journal version).

Lemma 1. If a simplicial cone K satisfies C ⊆ K ⊆ C∗, then K is
a rotated version of Rn

+.

2. UNIQUENESS OF NMF

For uniqueness analysis, we assume that K = rank(S), and thus
both W and H are full rank.

Definition 4 (Uniqueness of Asymmetric NMF). The NMF of a ma-
trix S = WH is said to be (essentially) unique if S = W̃H̃ implies
W̃ = WPD and H̃ = (PD)−1H, where D is a diagonal matrix
with its diagonal entries positive, and P is a permutation matrix.

Definition 5 (Uniqueness of Symmetric NMF). The NMF of a ma-
trix S = WWT is said to be (essentially) unique if S = W̃W̃T

implies W̃ = WP, where P is a permutation matrix.

• Donoho and Stodden’s Analysis: Each column of S is a non-
negative linear combination of all the columns of W, therefore
cone(S) ⊆ cone(W). Furthermore, let PV = RK

+ ∩ span(S), since
rank(W) = rank(S), W ≥ 0, obviously cone(W) ⊆ PV . Thus,
we have the following relation

cone(S) ⊆ cone(W) ⊆ PV , (1)

and NMF can be interpreted as finding a simplicial cone with K
extreme rays that satisfies (1). This naturally leads to the following
lemma.

Lemma 2. [4] The NMF of the non-negative matrix S is unique if
and only if there is a unique order-K simplicial cone W such that
cone(S) ⊆ W ⊆ PV .

Once we find such a simplicial cone, the matrix W can be ob-
tained by taking all the extreme rays ofW as its columns. Obviously
the extreme rays are invariant under scaling, and it does not matter
how we order the extreme rays, which is in agreement with Defini-
tion 4.
• Laurberg’s Analysis: Laurberg et al. [5] offered a different view
point on the uniqueness of NMF, summarized in Lemma 3.

Lemma 3. [5] If rank(S) = K, the NMF S = WH is unique if
and only if the positive orthant is the only simplicial cone A with K
extreme rays that satisfies cone(WT ) ⊆ A ⊆ cone(H)∗.

Both Donoho et al. and Laurberg et al. derived their own suffi-
cient conditions based on the lemmas that they proposed. However,
these sufficient conditions both require one of the latent factor ma-
trices to contain a diagonal matrix as a sub-matrix (after proper per-
mutation) – a very strict condition that is unlikely to hold in practice.

Can we come up with a more general condition that satisfies Lemma
2 and Lemma 3?
• New Results on Uniqueness of Symmetric and Asymmetric
NMF: We are now ready to present our new conditions on the
uniqueness of symmetric and asymmetric NMF (all proofs skipped
due to space considerations – they will be provided in the journal
version). We start with a necessary condition.

Theorem 1 (Necessary Condition). Define Ik = {i |Wi,k ̸= 0}
and Jk = {j |Hk,j ̸= 0}. If the NMF S = WH is unique, then
there do not exist k1, k2 ∈ {1, · · · ,K}, k1 ̸= k2 such that Ik1 ⊆
Ik2 , or Jk1 ⊆ Jk2 . The condition must also hold in the symmetric
case, i.e., when H = WT .

For the case of asymmetric NMF, we recently found the condi-
tion in Theorem 1 in the preprint of [11, Remark 2]. What is nec-
essary for uniqueness of asymmetric NMF, however, is not automat-
ically necessary for uniqueness of symmetric NMF; and we claim
that the same result holds for symmetric NMF as well.

Corollary 1. If the NMF S = WH is unique, then each column of
W (and row of H) contains at least one element that is equal to 0.

Corollary 1 is exactly the “boundary close” condition given in
[5]. Using Donoho and Stodden’s analysis, the requirement that ev-
ery column of W has a zero entry means that every extreme ray of
cone(W) is on the boundary of PV , and every row of H having a
zero entry means there are columns of S on every facet of cone(W).
This condition is intuitive, because otherwise we can always perturb
cone(W) into a slightly bigger or smaller cone that still satisfies
cone(S) ⊆ cone(W) ⊆ PV , so that NMF won’t be unique accord-
ing to Lemma 2.

We need the second-order cone C defined in Example 1 for our
sufficient condition.

Theorem 2 (Sufficient Condition). If rank(W) = rank(H) = K,
cone(WT ) ⊇ C and cone(H) ⊇ C, and none of the extreme rays
of cone(WT )∗ or cone(H)∗ except ek’s lie on the boundary of C∗,
then the NMF S = WH is unique. This condition is also sufficient
in the symmetric case, i.e., when H = WT .

Example 2. [5] Consider the symmetric NMF S = WWT where

W =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

T

For 0 ≤ ω ≤ 1, symmetric NMF is unique if and only if ω < 0.5.

If ω < 0.5, cone(WT ) ⊇ C, and none of the extreme rays of
it except e1, e2, e3 lie on the boundary of C∗, so, according to The-
orem 2, symmetric NMF is unique. If ω ≥ 0.5, we can explicitly
construct an alternative NMF. Laurberg et al. [5] first gave this ex-
ample and pointed out that uniqueness depends on the value of ω
in this case. However, the sufficient condition for uniqueness given
in [5] fails to demonstrate when uniqueness holds in this case, ex-
cept for ω = 0; whereas our new sufficient condition in Theorem
2 is able to identify the full interval where uniqueness holds in this
case.

Corollary 2. If the NMF S = WH satisfies the condition given in
Theorem 2, then each column of W and row of H contains at least
K − 1 elements that are equal to 0.

Corollary 2 has a very interesting interpretation using Donoho
and Stodden’s analysis, leading to the following proposition.
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Proposition 1. If W and H satisfy the conditions given in Theorem
1 and Corollary 2, and all their non-zero entries are drawn from
an i.i.d. continuous distribution with support contained in R+, then
there does not exist another simplicial coneW with K extreme rays
that satisfies either cone(W) ⊂ W ⊆ PV or cone(S) ⊆ W ⊂
cone(W) with probability 1.

Claiming that there does not exist another simplicial cone W
with K extreme rays that satisfies either cone(W) ⊂ W ⊆ PV or
cone(S) ⊆ W ⊂ cone(W) already rules out a lot of possibilities to
find another NMF. However, it is still not enough to claim unique-
ness, as we have seen in Example 2 when ω ≥ 0.5. This is why
Corollary 2 is not a sufficient condition, but Theorem 2 is.

The sufficient condition for uniqueness of NMF given in Theo-
rem 2 requires checking whether the conic hull of a set of vectors
contains a specific second-order cone. Unfortunately, this turns out
being a very hard problem:

Proposition 2. Checking whether cone(WT ) ⊇ C is true is NP-
complete.

Nevertheless, we have Theorem 1 and Corollary 2, which are
easy to check, and Proposition 1, which rules out a great deal of
possibilities for non-uniqueness.

One can check that Donoho and Stodden’s “complete factorial
sampling” condition implies the condition given in Corollary 2 ap-
plied to W. Laurberg et al.’s “strongly boundary close” condition
is a relaxed version of “complete factorial sampling”, but still im-
plies Corollary 2. However, neither “complete factorial sampling”
nor “strongly boundary close” imply cone(W) ⊇ C, which means
that their condition on W is weaker. Their condition on H is much
stronger, however. Indeed, Donoho’s “separability” condition re-
quires that cone(H) = RK

+ , and Laurberg’s “sufficiently spread”
condition means that the above condition should be satisfied at least
asymptotically. This certainly implies not only Corollary 2 but also
Theorem 2, and is too strict on H compared to that on W. The
condition given in Theorem 2, on the other hand, imposes a tighter
requirement on W and a looser one on H. In fact W and H are
treated equally – a symmetric condition, as we would normally ex-
pect.

3. SYMMETRIC NMF: ALGORITHM

Suppose there exists a symmetric NMF of S with K = rank(S)
components. Then S is symmetric positive semi-definite; consider
its reduced eigen-decomposition S = UsΛsU

T
s where Us is I×K

orthogonal and Λs is K ×K diagonal. Define B = UsΛ
1/2
s , since

S = BBT = WWT where both B and W are I ×K, there exists
a unitary matrix Q such that BQ = W. Therefore, after obtaining
B via eigen-analysis, we can formulate the recovery of S as follows:

min
W,Q

∥W −BQ∥2F (2a)

subject to W ≥ 0,QTQ = QQT = I (2b)

The constraint QTQ = QQT = I is not convex with re-
spect to Q, suggesting that (2) is a hard problem. We propose up-
dating W and Q in an alternating fashion. The updating rule for
W is extremely simple: since W is non-negative, we simply set
W ← max(0,BQ). When updating Q, it can be shown that the
solution is given by the Procrustes projection [12]. This yields our
new algorithm for the symmetric NMF given in Fig. 1. Since each

1: S = UsΛsU
T
s ◃ Reduced eigenvalue decomposition

2: B← UsΛ
1/2
s , Q← I

3: repeat
4: W← max(0,BQ)
5: WTB = UΣVT ◃ Singular value decomposition
6: Q← VUT

7: until convergence

Fig. 1: Proposed algorithm for symmetric NMF
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Fig. 2: Convergence of the proposed algorithm comparing to α-
SNMF and β-SNMF [8] with α = β = 0.99.

step is optimal for W and Q respectively, iterations are guaranteed
to reduce or maintain the cost function.

4. SIMULATIONS

• Synthetic Data: The matrix S is generated by taking S = ŴŴT ,
where Ŵ is a sparse non-negative matrix, with the non-zero entries
drawn from an i.i.d. exponential distribution. We take the size of Ŵ
to be 100× 20. The convergence of a single run of our proposed al-
gorithm is illustrated in Fig. 2, comparing to α-SNMF and β-SNMF
provided in [8] on the same S, with α = β = 0.99, since their
experiments showed (and we verified) that this value gives faster
convergence. The cost employed in both α-SNMF and β-SNMF
is ∥S−WWT ∥2F , which is different from (2a), but we compare all
three using ∥S−WWT ∥F on the y-axis as common basis.

In Fig. 2, approximately 50% (resp. 70%) of the entries of Ŵ
are nonzero for the top left (resp. top right) panel, in which cases our
proposed algorithm performs the best, since it converges in less than
1 second, and we can see a nice linear convergence. The bottom two
panels show rather dense cases, with approximately 90% nonzeros
for the left, and fully dense on the right. In both cases, convergence
is much slower compared to the sparse cases, although linear con-
vergence eventually appears. An interesting observation is that our
algorithm gets stuck at a saddle point around 0.1-0.3 seconds when
density is 0.9. We are currently investigating line search schemes
that can overcome such swamps. Still, our algorithm clearly outper-
forms both α-SNMF or β-SNMF, and by a big margin when the true
latent factors are sparse.

We also compared the difference between W and Ŵ. Accord-
ing to Definition 5, there is no scaling ambiguity if the symmetric

4526



0 10 20 30
0

50

100
density 0.5

0 10 20 30
0

50

100
density 0.7

0 10 20 30
0

10

20

30
density 0.9

0 10 20 30
0

10

20

30
density 1.0

Fig. 3: Statistics of 100 Monte Carlo tests of Latent factor estimation
error ∥W−Ŵ∥F for symmetric NMF with different latent density.

NMF is unique, so we only need to worry about the ordering of the
columns. We first calculate WTŴ, and, for each column, the row
index of the largest entry is picked up. If one row index has already
been picked up, then following columns will pick the next largest
row, until every row index is picked once. A permutation is con-
structed at the end of this process, and the columns of W are per-
muted accordingly. This greedy permutation matching procedure is
generally suboptimal, but it is simple and works very well in prac-
tice. We run this experiment 100 times for different densities, and
the statistics of ∥W − Ŵ∥F are given in Fig. 3. Apparently, if the
latent factor is sparse enough, NMF is in most cases unique and our
proposed algorithm finds the true latent factors.
• ARL CTA Co-authorship Data: We applied our proposed algo-
rithm to a real-life dataset containing co-authorship data from the
U.S. Army Research Laboratory Collaborative Technology Alliance
(ARL-CTA) on Communications and Networks (C&N), a large-
scale research project that involved multiple academic and indus-
try research groups, led by Telcordia. The ARL C&N CTA run for
8 years, and produced numerous publications, involving over 500
individuals. A. Swami and N. Sidiropoulos were both involved as
researchers and authors in this project, and A. Swami had significant
oversight on much of the research - they know the ‘social dynamics’
and history of the consortium, and can interpret / sanity check the
results of automated social network analysis of this dataset. The par-
ticular data analyzed here is a 518×518 symmetric non-negative ma-
trix A, where Ai,j is the number of papers co-authored by author-
i and author-j (Ai,i is the number of papers written by author-i).
The task is to cluster the authors, based only on A. Ding et al. [7]
have shown that k-means clustering can be approximated by NMF
of the pair-wise similarity matrix S = XTX = WWT , where the
columns of X represent the data points that we want to cluster, and
the number of columns of W, K, is the number of clusters. The
cluster that X:,i belongs to is determined by taking argmaxk Wi,k.
In our case, we do not have access to X, but we may interpret A
as the pair-wise similarity matrix S = XTX, to be decomposed as
S = WWT , with W ≥ 0.

We run symmetric NMF on A for K = 3, 10. The weight of
cluster k is measured by ∥W:,k∥2, and the weight of author i in the
cluster k is measured by Wi,k. Table 1 lists the top-10 contribu-
tors of the top-3 clusters, for K = 3 (top) and K = 10 (bottom).
The results are very reasonable. The first cluster is Georgios Gian-
nakis’ group at the University of Minnesota, the participant who con-
tributed most publications to the project.The second cluster is more
interesting: it comprises Lang Tong’s group at Cornell, but also close
collaborators from ARL (Brian Sadler, Ananthram Swami) who co-
authored many papers with Cornell researchers and alumni over the
years. The third cluster is even more interesting, and would have

Table 1: Top-10 contributors of the top-3 clusters for K = 3

cluster 1 cluster 2 cluster 3
G.B. Giannakis L. Tong M.A. Fecko

S. Zhou A. Swami S. Samtani
X. Ma Q. Zhao M.U. Uyar
P. Xia B.M. Sadler I. Hokelek
X. Cai Y. Chen J. Zou

T. Wang M. Dong J. Zheng
Q. Liu Y. Sung M.J. Lee

X. Wang T. He T.N. Saadawi
Z. Wang P. Venkitasubramaniam U.C. Kozat
A. Cano Z. Xu P.T. Conrad

Table 2: Top-10 contributors of the top-3 clusters for K = 10

cluster 1 cluster 2 cluster 3
G.B. Giannakis L. Tong M.A. Fecko

S. Zhou A. Swami S. Samtani
P. Xia B.M. Sadler M.U. Uyar
X. Cai M. Dong I. Hokelek
Q. Liu T. He J. Zou

T. Wang Y. Sung J. Zheng
X. Wang P. Venkitasubramaniam U.C. Kozat
Z. Wang S. Adireddy P.T. Conrad

Y. Yu G. Mergen A. Abdelal
A. Cano A. Anandkumar J. Sucec

been harder to decipher for someone without direct knowledge of
the project. It primarily consists of Telcordia researchers, but it also
contains researchers from the City University of New York (CUNY),
and, to a lesser extent, the University of Delaware (UDEL), suggest-
ing that geographic proximity may have a role. Interestingly, the net-
work of collaborations between Telcordia, CUNY, and UDEL dates
back to the FEDLAB project (which was in a sense the predecessor
of the CTA), and continued through much of the CTA as well. No-
tice that the three clusters remain stable even when K = 10 > 3 is
used, although NMF is not guaranteed to be nested (for even higher
K, e.g., K = 30, this stability breaks down, as larger clusters are
broken down in more tightly woven pieces).

5. CONCLUSIONS

We have revisited NMF from a geometric point of view, paying
particular attention to uniqueness and algorithmic issues. NMF
has found numerous applications in diverse areas, and its success
stems in good measure from its ability to unravel the true latent
factors in certain cases - which makes our limited understanding
of when uniqueness holds particularly annoying. Symmetric NMF
is element-wise non-negative square-root factorization of positive
semidefinite matrices, and it too has many applications - not least
as an approximation to the NP-hard k-means problem. We provided
new uniqueness conditions that help shed light into the matter, al-
though checking a key condition that we derived was also shown
to be NP-complete. Beyond uniqueness, a new algorithm for sym-
metric NMF was proposed, using Procrustes rotations. These were
shown to be useful additions to our existing NMF toolbox. We also
applied our new symmetric NMF algorithm to a clustering problem
for co-authorship data from the ARL C&N CTA, and we obtained
meaningful and nicely interpretable results.
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