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ABSTRACT

This paper studies the overhead for channel gain monitor-
ing in wireless networks with time division multiple access.
We first investigate the scenario in which a receiver needs
to track the channel gains with respect to multiple transmit-
ters. Suppose that there are n transmitters, and no more than
k channels suffer significant variations since the last round.
We prove that “Θ(k log(n/k)) time slots” is the minimum
overhead needed to catch up with the k varied channels.
We propose a novel channel-gain monitoring scheme named
ADMOT. ADMOT leverages recent advances in compres-
sive sensing in signal processing and interference process-
ing in wireless communication, to enable the receiver to es-
timate all n channels in a reliable and computationally effi-
cient manner within O(k log(n/k)) time slots. To our best
knowledge, all previous channel-tracking schemes require
Θ(n) time slots regardless of k.
Keywords: Wireless Network, Channel Gain Estimation,
Compressive Sensing.

1. INTRODUCTION

The knowledge of channel gains is often needed in the de-
sign of high performance communication schemes [1–6]. In
practice, the channel gains vary with time. Tracking and es-
timating channel gains of wireless channels is therefore fun-
damentally important [7–13]. An issue of interest is how to
reduce the overhead of channel-gain estimation. On the one
hand, if between two rounds of channel-gain estimation, the
channels have varied significantly, then communication re-
liability will be jeopardized [4, 5, 10]. On the other hand, if
the frequency of channel-gain estimation is high, the over-
head will also be high [1,7,14]. Our approach is predicated
on reducing the overhead in each round, while maintaining
high accuracy.

We consider the case in which a receiver needs to esti-
mate the channel gains from n transmitters [1, 2], and we
assume the wireless channel conditions are more static. To
achieve reliable bit-error-rate (BER), the frequency of esti-
mation should be high enough [1]. Then it is likely that only
a few of the n channels have suffered appreciable changes
since the last estimation. We make use of the techniques

of compressive sensing and interference signal processing
to reduce the time needed to perform the estimation in each
round. We propose the following question: Suppose that in
the current round, there are at most k ≤ n channels suf-
fering from appreciable channel gain variations. Given a
target reliability for channel-gain estimation, can we reduce
the overhead for probing all the channels? We prove that
the minimum number time slots needed for estimation is
Θ(k log((n + 1)/k)). Then we propose a scheme named
ADMOT, which utilizes the compressive sensing technique
to probe a large-scale of channels simultaneously. We also
show that ADMOT uses O(k log(n/k)) time slots for the
probing. (Note that in each time slot, every transmitter trans-
mits one symbol. Thus, one time slot is also one symbol
duration.)

1.1. Illustrating Example

For illustration, let us consider the uplink of a cellular net-
work with one receiver R and three transmitting nodes S1,
S2, and S3. We assume that this cellular network makes
use of TDMA channel access. The three channels (S1, R),
(S2, R) and (S3, R) need to be estimated before data trans-
mission. We assume all the initial channel gains of the three
channels be 1, and suppose one of the channel gains changes
to x in the current time. The goal of monitoring is to identify
the updated channel and the value of x. A simple scheme
is to schedule training data transmissions in different time
slots, as shown in Figure 1. In time slots 1, 2, and 3, sender
Si, i = 1, 2, 3, sends training data 1 to node R, respec-
tively, so that R can estimate the channel gain of (Si, R).
Thus, altogether three time slots are needed. However, us-
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Figure 1: The monitoring scheme based on scheduling.
The “solid-line”, “dashed-line” and “dotted-line” are for the
transmission of time slots 1, 2 and 3, respectively.

ing the algebraic approach to exploit the nature of wireless
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medium, two time slots are enough. As shown in Figure 2,
in time slot 1 S1 and S2 and S3 all send training data 1 to
node R. These three signals “collide” in the air, but the col-
lided signals turn out to be useful for our estimation. Let
y[1] denote the signal received by R in the first time slot.
We have y[1] = 3 + (x − 1). In time slot 2 S1, S2 and S3

send training data 1, 2 and 3, respectively. Thus, the re-
ceived signal is y[2] = 6+ i(x−1) if (Si, R) is the updated
channel. At the end of the second time slot, R computes
[y(1), y(2)] − [3, 6] = (x − 1)[1, i]. Since [1, 1] and [1, 2]
and [1, 3] are mutually linearly independent,R can uniquely
decode i and x.
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1 1 1

Time slot 1
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1

Time slot 2

2 3

Figure 2: A better monitoring scheme. The first and sec-
ond sub-figure show the transmissions in time slots 1 and 2,
respectively.

1.2. Related Work

The works [9–13] designed probing data and estimation al-
gorithm for estimating channel gains, but interference has
not been shown to be an advantage. The benefits of net-
work coding has been shown in [4–6, 15]. We remark that
[4] has shown the advantage of interference, and later the
work [5] proposed an amplify-and-forward relaying strat-
egy for easy implementation. Our paper here demonstrates
that not shunning away from interference is also advanta-
geous in channel-gain monitoring. ADMOT proposed in
this paper uses recent advances of compressive sensing de-
veloped for sparse signal recovering [16, 17]. Compres-
sive sensing has been used to recover the channel’s delay-
Doppler sparsity [18], channel’s sparse multipath structure
[19], sparse-user detection [20, 21] and channel’s sparse re-
sponse [22]. When applying the above schemes to estimate
all the n channels from the transmitters, the overhead is at
least Θ(n). In contrast, ADMOT achieves optimal overhead
O(k log(n/k)).

2. PROBLEM SETTING

2.1. Notation Conventions and Preliminaries

For a vector V ∈ Rn, define ‖V ‖1 =
∑n

i=1 |V (i)| and
‖V ‖2 =

√∑n
i=1 |V (i)|2, where V (i) is the ith entry of V .

Define the “distance” between V and k-sparsity by:

dk(V ) = ||V − V k||1, (1)

where V k is V with all but the largest k components set to
0. V is be k-sparse if and only if dk(V ) = 0.

For vector H ∈ Cn, ‖H‖22 = ‖Re(H)‖22 + ‖Im(H)‖22,
where vector Re(H) be the real part of X and Im(H) be
the imaginary part of X . Let N (µ, σ2) denote the normal
distribution with mean µ and variance σ2. Throughout the
paper, the logarithm function log(.) is computed over base
2, i.e., log(.) = log2(.).

Let M be a matrix in Rm×n with m � n, and each
column has unit `2-norm. M satisfies restricted isometry
property(RIP) of order k if for all k-sparse vector X ∈ Rn,
(1−δk)||X||22 ≤ ||MX||22 ≤ (1+δk)||X||22 holds for some
δk > 0 [23].

Let X ∈ Rn be the data vector and Y = MX + Z be
the noisy measurement, where Z ∈ Rm is the noise with
||Z||2 ≤ σ. Let ConvexOPT(M,Y, σ) denote the solution
to the following problem:

min ||X||1 subject to ||MX − Y ||2 ≤ σ. (2)

If M satisfies RIP for δ2k <
√

2− 1, then

Theorem 1 [23]

||X −X∗||2 ≤ C1dk(X)/
√
k + C2σ/

√
m, (3)

for constantsC1 andC2, whereX∗ =ConvexOPT(M,Y, σ)
.

2.2. Communication Model

We consider the uplink of a multiple access channel with
one receiver R. Let S = {S1, S2, ..., Sn} be the set of
transmitting nodes. We assume all transmissions are slot-
ted and synchronized. In each time slot, every transmit-
ter transmits one symbol. For the sake of exposition, we
assume that channels are narrowbanded and channel gains
are flat. We assume the channel conditions don’t change
dramatically across time. As shown in Figure 3, the data

frame n

estimation transmission

frame n+1

Figure 3: Systematical implementation of ADMOT.

stream is divided into frames. Consider time slot s in the
estimation period of frame j, each Si ∈ S transmits symbol
Xi[j, s] ∈ C. Then the received signal at R is Y [j, s] =∑n

i=1Hi[j, s]Xi[j, s] + Z[j, s], where Hi[j, s] ∈ C is the
channel gain of (Si, R) and Z[j, s] ∈ C is the noise. Note
that bothRe(Z[j, s]) and Im(Z[j, s]) are identically and in-
dependently distributed (i.i.d.)∼ N (0, 1) across all frames
and time slots1. The state of R is defined to be a vector
H[j, s] ∈ Cn, whose i’th component isHi[j, s]. We assume
channel gain stays unchanged within a frame transmission.
In the following, we use H[j] = H[j, 0] to denote the state
at the j’th frame.

1For the simplicity, we normalize the noise variance to be 1.
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2.3. State Estimation in Dynamic Network

Let Ĥ[j − 1] ∈ Cn be the estimation of H[j − 1] at R.
Our objective is to estimate H[j] by Ĥ[j − 1] and the sig-
nals received in the estimation period of the j’th frame.
For ε > 0 and non-negative integer k ≤ n, the difference
H[j] − Ĥ[j − 1] is said to be (k, ε)-sparse if and only if
dk(Re(H[j] − Ĥ[j − 1])) ≤ ε and dk(Im(H[j] − Ĥ[j −
1])) ≤ ε. Channel (Si, R) is suffering α-variation if and
only if |Hi[j] − Ĥi[j − 1]| ≥ α. Thus, for “(k, ε)-sparse”
state variationH[j]−Ĥ[j−1], there are at most k channels
suffering from ε/k-variation.

3. ADMOT STATE ESTIMATION

3.1. Construction of ADMOT

The training data of ADMOT is denoted by matrix Φ with
dimensions m × n. Here, n is the number of transmitters
in the network and m is the number of the time slots. Each
component Φ(s, i) is generated independently from {−1, 1}
with equal probability, for all s and all i. The i-th column
of matrix Φ is assumed to be known a priori to transmitter
Si in the network, for all i ∈ {1, 2, . . . , n}. Knowledge of
Φ can be broadcast by R in the network setting-up stage. 2

The training data of each Si ∈ S (i.e., the i’th column of
Φ) is in fact the “algebraic fingerprint” of channel (Si, R).
These fingerprints are “highly independent” such that the
varying channels would expose their fingerprints even un-
der interference. Let m be the system parameter denoting
the number of time slots used by ADMOT. We construct
ADMOT as follows.

• ADMOT(Ĥ[j − 1],S, R,m).
• Variables Initialization: Vector Ĥ[j] ∈ Cn is the esti-

mation of H[j], which is initialized to be zero vector.
Vector Y ∈ Cm is initialized to be zero vector.

• Step A: For s = 1, 2, ...,m, in the s’th time slot:
– For any Si ∈ S, Si sends Φ(s, i).
– Node R sets Y (s) (i.e., the s’th component of
Y ) to be the received sample in the time slot.
Thus, Y (s) =

∑n
i=1 Φ(s, i)Hi[j]+Z[j, s], where

Z[j, s] is the noise in the time slot (see Sec-
tion 2.2 for details).

• Step B: Node R computes D ∈ Cm as D = Y −
ΦĤ[j − 1]. Thus, D = Φ(H[j]− Ĥ[j − 1]) + Z[j],
where Z[j] ∈ Cm is the noise vector that is com-
prised of {Z[j, s] : s = 1, 2, ...,m}.

• Step C: Node R runs ConvexOPT(Φ, Re(D),
√

2m)
and ConvexOPT(Φ, Im(D),

√
2m). Let the solutions

be denoted by Re(∆∗) ∈ Rn and Im(∆∗) ∈ Rn,
respectively.

2To avoid the overhead of broadcasting Φ, we can generate Φ by practi-
cal pseudorandom generators [24]. Since ADMOT can be simulated within
polynomial time, pseudo randomness suffices.

• Step D: Node R estimates H[j] by Ĥ[j] = Ĥ[j −
1] + ∆∗.

• Step E: End
To avoid the accumulative errors, we can apply ADMOT
consecutively for k frames, and then re-initialize the states.

3.2. Estimation Performance of ADMOT

Theorem 2 If m ≥ C0k log(n/k) for a constant C0, and
H[j] − Ĥ[j − 1] is (k, δ

√
k)-sparse for some δ > 0, then

the estimation error of ADMOT satisfies ||Ĥ[j]−H[j]||2 ≤√
2C1δ+ 2C2 with a probability 1−O

(
e−0.15m

)
, for some

constants C1 and C2.

We need the following lemma for proof of Theorem 2.

Lemma 3 IfZ ∈ Rm has i.i.d. N (0, 1) entries, then ||Z||2 ≤√
2m with probability at least 1− e−0.15m.

Proof of Lemma 3 For any i 6= j, the probability density
function of X = Z(i)2 + Z(j)2 is fX(x) = e−x/2/2 for
x ≥ 0 [25]. Thus, E(eX/4) =

∫ +∞
0

e(−x/4)/2dx = 2.
Without loss of generality we assume m is even. Then we
have:

Pr(||Z||22 > 2m) = Pr
( d∑

i=1

Z(i)2/4 > m/2
)

= Pr
(
e
∑m

i=1 Z(i)2/4 > em/2
)
≤
E
(
e
∑m

i=1 Z(i)2/4
)

em/2
(4)

=

∏m/2
j=1 E

(
e

Z(2j−1)2

4 +
Z(2j)2

4

)
em/2

≤ 2m/2

em/2
≤ e−0.15m, (5)

where the inequality in (4) is by the Markov Inequality, and
(5) is by the independence between the random variables. It
completes the proof of Lemma 3. 2

Now we are ready to prove Theorem 2. Proof of The-
orem 2. When m ≥ C0k log(n/k), with overwhelming
probability (i.e., 1 − O(2−n)), the matrix Φ/

√
m satisfies

RIP with δ2k <
√

2 − 1 [23]. From Lemma 3, we have
Pr(||Z||2 ≥

√
2m) > 1 − e−0.15m. Now we assume

both events happen, which is true with probability at least
1−O(2−n)− e−0.15m. By Theorem 1, Re(∆∗) satisfies

||Re(∆∗)−Re(H[j]− Ĥ[j − 1])||2
≤ C1dk(Re(Ĥ[[j − 1]−H[j]))/

√
k +
√

2C2.

SinceH[j]−Ĥ[j−1] is (k, δ
√
k)-sparse, we have ||Re(Ĥ[j]−

H[j])||2 ≤ C1δ +
√

2C2 by settingĤ[j] = Ĥ[j − 1] + ∆∗.
Similarly we have ||Im(Ĥ[j] − H[j])||2 ≤ C1δ +

√
2C2.

In the end, we have ||Ĥ[j] − H[j]|| ≤
√

2C1δ + 2C2. It
completes the proof of Theorem 2. 2

In fact, O(k log(n/k)) is the best we can achieve for
channel state estimation. It is proved Theorem 4.
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Figure 4: Comparison between AD-
MOT and previous monitoring schemes
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Theorem 4 For any k ≤ n, when H[j] − Ĥ[j − 1] is
(k, δ
√
k)-sparse, any monitoring scheme achieving estima-

tion error ||Ĥ[j]−H[j]||2 ≤ O(δ) requires at least Θ(k log
((n+ 1)/(k))) time slots.

Proof of Theorem 4: We first consider a sub-problem: As-
suming Re(H[j] − Ĥ[j − 1]) is (k,

√
kC)-variation and

Im(H[j]− Ĥ[j − 1]) is a all-zero vector, what is the mini-
mum slots to findRe(Ĥ[j]) such that ||Re(Ĥ[j])−Re(H[j])
||22 = O(1)?

Assume T time slots are used for estimating Re(H[j]).
For any s = 1, 2, ..., T , and i = 1, 2, ..., n, in the t’th time
slot let Si send A(s, i) ∈ C. Let Y (s) ∈ C be the received
data of R in the s’th time slot, and Y ∈ CT be a length-T
vector whose s’th component is Y (s). Thus Y = AH[j].
Note that assuming no noise only reduces the complexity
of estimating H[j]. Since Ĥ[j − 1] and A are known by
R as a priori, the original problem is equivalent to estimat-
ing ∆ = H[j] − Ĥ[j − 1] by D = Y − AĤ[j − 1] =
A(H[j]− Ĥ[j − 1]). As Im(H[j]) = Im(Ĥ[j − 1]), Y =
A(Re(H[j]) − Re(Ĥ[j − 1])). Thus the problem is equal
to estimating Re(∆) by Re(D) and Im(D). A recent re-
sult [26] shows that provided dk(Re(∆)) ≤ C

√
k for some

constant C, it requires at least Θ(k log((n + 1)/k)) linear
samples (over R) for reliably finding ∆∗ ∈ Rn such that
||Re(∆)−∆∗||22 ≤ O(1). Thus we have T ≥ Θ(k log((n+
1)/k)). For the original problem, which considers noise and
the variations of imaginary parts of channel gains, the com-
plexity can only be higher. 2

4. PERFORMANCE EVALUATION

Let the n = |S| = 500, average channel SNR= 20db. A
channel preserves stability x% if with < (1 − x%) proba-
bility the channel suffers significant variations. Let H[r] =
H[r− 1] + ∆[r], where ∆[r] is the variation. Each compo-
nent of ∆[r] ∈ Cn, say ∆[r](i), is independently generated
as: with a probability x% (or 1 − x%), Re(∆[r](i)) and

Im(∆[r](i)) are uniformly and independently chosen from
[−10, 10] (or [−500, 500]).

We proceed ADMOT(Ĥ[r − 1],S, R,mr) for the r’th
frame. Figure 4 shows the average time slots (per round)
used by ADMOT. From the figure, we can see that AD-
MOT significantly reduces the overheads when x is large,
i.e., high channel stability is required. In the region where x
is small, ADMOT also preserves reliable performance. We
also provide the detailed simulations for the cases where
channel preserves stabilities 80%, 90%, and 98%, respec-
tively. The average time slots used per round is 320, 252,
and 140, respectively. Figure 5 shows the relative estima-
tion errors ||Ĥ[r]−H[r]||2/||H[r]||2 of ADMOT for 50 ran-
domly selected frames. Note that we bound estimation error
regardless the channel stability x%. Thus, lower channel
stability only corresponds to more overheads (as shown in
Figure 4). For a detailed look, we also show the estimations
at 50 randomly chosen frames for the case of 80% chan-
nel stability. Figure 6 draws (the absolute value of) channel
gains and the corresponding estimations for the 200,201, ...
, 300-th channels.

5. CONCLUSION

In the paper, we investigate the scenario where a receiver
needs to track the channel gains of the channels with re-
spect to n transmitters. We assume that in each round of
channel gain estimation, no more than k < n channels suf-
fer significant variations since the last round. We prove that
“Θ(k log((n+1)/k)) time slots” is the minimum number of
time slots needed to catch up with k varying channels. We
propose a novel scheme ADMOT to reduce the overhead for
estimating a large number of channels simultaneously by
leveraging the recent technique compressive sensing. We
also analyze the theoretical performance of ADMOT and
show that ADMOT can achieve the overhead lower bound.
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