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ABSTRACT
Data covariance matrices that consist of sparse factors arise in set-
tings where the field sensed by a network of sensors is formed by
localized sources. It is established that the task of identifying source-
informative sensors boils down to estimating the support of the un-
derlying sparse covariance factors. Relying on norm-one regular-
ization a distributed sparsity-aware framework is developed. The
associated minimization problems are solved using computationally
efficient coordinate descent iterations that are combined with ma-
trix deflation mechanisms. A simple scheme is also developed to
set appropriately the sparsity-adjusting coefficients which can prov-
ably recover the support of a covariance matrix factor. Adaptive
implementations that account for time-varying settings are also con-
sidered. The novel utilization of covariance sparsity does not re-
quire knowledge of the data model parameters, while numerical tests
demonstrate that the novel schemes outperform existing alternatives.

Index Terms— Distributed processing, sparsity, adaptive algo-
rithms

1. INTRODUCTION

Sensor networks are well fitted for applications including surveil-
lance and health monitoring of large structures. The major task of
sensors is to collect and process information about a sensed field
where sources of interest may be present. Such sources, e.g., mov-
ing person/object, thermal sources and so on, in practical settings
are localized and affect a small number of sensors. Thus, only sen-
sors acquiring information about a source have to stay active and
perform sensing and processing. Different approaches have been
developed to perform sensor selection for estimation/tracking [1–4]
and detection applications [5]. These works focus on optimizing
a pre-specified estimation/detection performance metric while re-
specting constraints either in power, or, the number of active sensors
that collect information. However, existing approaches either rely
on the availability of the underlying data and source models param-
eters [1–4], or are not amenable to distributed processing [1–3, 5].
The goal in the present work is to design distributed schemes that
have the potential to identify all source-informative sensors without
requiring knowledge of the data model parameters.

Sensors that are located close to a source acquire data measure-
ments that tend to be correlated. It turns out that the covariance
matrix of the sensor measurements can be analyzed into sparse fac-
tors. Sparsity has been exploited in a broad range of applications
including sparse regression and sub-Nyquist sampling [6, 7]. In-
terestingly, the problem of determining the source-informative sen-
sors boils down to the task of decomposing the data covariance ma-
trix into sparse factors and determining their support (position of
nonzero entries). Some existing sparse matrix decomposition tech-
niques assume that the unknown sparse factors are orthogonal [8–
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12]. Other matrix factorization techniques decompose matrices into
factors with nonnegative entries [13–16]. Sparsity inducing mecha-
nisms are incorporated in [13], though no guidelines are provided on
how to determine the sparsity level of the unknown factors. Further,
the latter matrix decomposition techniques are not distributed.

The novel sparsity-aware matrix decomposition framework is
built by augmenting a least-squares matrix factorization cost with
pertinent ℓ1− regularization terms that exploit the sparsity present
in the, not necessarily orthogonal, covariance factors. A distributed
sparsity-aware matrix decomposition (SMD) framework is put forth,
while coordinate descent iterations are employed to estimate the un-
derlying covariance factors and determine their support (Sec. 3).
Deflation is utilized to further simplify the decomposition schemes,
and facilitate the development of a distributed scheme that sets ap-
propriately the sparsity-adjusting coefficients (Secs. 3.1 and 3.2).
The latter selection technique can provably recover the support of
an underlying covariance factor. Adaptive implementations are also
considered in Sec. 4 that can handle time-varying settings. Numeri-
cal tests show that the novel factorization schemes outperform exist-
ing alternatives (Sec. 5).

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider a network comprising p sensors that monitor a field which
is formed by r zero-mean uncorrelated stationary sources repre-
sented through the signals sρ(t), with ρ = 1, . . . , r. Each sensor
{Sj}pj=1 acquires local scalar measurements {xj(t)}pj=1 for the
sensed field at discrete time instances t = 0, 1, 2, . . .. For example,
in Fig. 1 there are p = 12 sensors and r = 3 sources of interest,
namely s1(t), s2(t) and s3(t). Source s1(t) affects the measure-
ments of sensors S4, S5, S6, S7, source s2(t) is sensed by sensors
S8, S9 and source s3(t) by S1, S3. The probabilistic distribution
and position of the sources are unknown. Utilizing the sensor data
{xj(t)}pj=1, acquired over a time-horizon [0, N − 1], this work de-
velops techniques that focus on i) identifying the informative sensors
that sense field source(s); and on ii) identifying groups of sensors
that observe the same source. Every sensor is connected with neigh-
boring sensors that can be reached via single-hop communications.
Let Nj denote the single-hop neighborhood of Sj .
The sensor observations xt := [x1(t), . . . , xp(t)]

T relate to the field
sources {sρ(t)}rρ=1 via the linear model

xt =
∑r

ρ=1 bρsρ(t) +wt = Bst +wt, (1)

where the columns of B := [b1, . . . ,br] correspond to the unknown
regressors, st := [s1(t), . . . , sr(t)]

T contains the source signals,
while wt := [w1(t), . . . , wp(t)]

T is the zero-mean white sensing
noise. Regressor bρ ∈ Rp×1 has nonzero entries at these positions
whose indices correspond to sensors whose measurements are af-
fected by source sρ(t) for ρ = 1, . . . , r. For instance in Fig. 1,
b1 will have nonzero entries in positions 4, 5, 6, 7, b2 in positions
8, 9 and b3 in positions 1, 3, while the rest of their entries are zero
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since the corresponding sensors are just sensing noise. Note that the
support of bρ indicates which sensors sense sρ(t).
Based on the data model in (1) the covariance Σx is written as

Σx = BDsB
T + σ2

wIp×p = H̄H̄T + σ2
wIp×p, (2)

where Ds corresponds to the diagonal covariance matrix of the
source vector st, σ2

w indicates the noise variance, Ip×p denotes
the p × p identity matrix and H̄ := BD

1/2
s . Further, let Mx :=

Σx − σ2
wIp×p = H̄H̄T , correspond to the noiseless signal co-

variance matrix. Notice that the support of B and H̄ are identical
since Ds is a diagonal matrix. The columns of H̄ are not neces-
sarily orthogonal while the support may contain negative entries. It
turns out that identifying the set of source-informative sensors in the
WSN boils down to locating where the nonzero entries are in H̄.
Oftentimes the ensemble covariance Σx is not known. Thus, in what
follows sample-average based estimates for the covariance entries
will be formed, namely Σ̂x(j, j

′) = N−1 ∑N−1
t=0 xj(t)xj′(t), using

sensor data {xt}N−1
t=0 . Further, an estimate for Mx will be obtained

as M̂x := Σ̂x − D̂w, where D̂w := diag(σ̂2
w,1, . . . , σ̂

2
w,p) while

σ̂2
w,j denotes the noise variance estimate at sensor Sj . Such an es-

timate can be formed when sources are not present in the field (i.e.,
xj(t) = wj(t)) via e.g., sample-averaging N−1

w

∑Nw−1
τ=0 x2

j (τ),
using Nw noisy samples. A distributed sparsity-aware matrix fac-
torization framework is developed next.

Fig. 1. A sensor network sensing three field sources.

3. DISTRIBUTED ℓ1-AWARE MATRIX DECOMPOSITION

Motivated by Mx = H̄H̄T one reasonable way to determine fac-
tors for the signal covariance M̂x involves minimization of the cost
∥M̂x − HHT ∥2F with respect to (wrt) H ∈ Rp×r , while ∥ · ∥F
denotes the Frobenius norm. However, such a minimization task is
not guaranteed to provide sparse factors, challenging the determi-
nation of source-informative sensors, let alone associating sources
with sensors. It is of interest to enhance the latter ‘least-squares’ like
matrix decomposition cost with mechanisms that induce sparsity.

Motivated by the sparsity-inducing mechanisms used in Lasso-
based regression [7], as well as in sparse principal component anal-
ysis techniques [8–12], an ℓ1 regularization term is added in ∥M̂x−
HHT ∥2F to effect sparsity in the unknown factors H. A pertinent
formulation for estimating the sparse columns (factors) of H̄ while
complying with the single-hop communication topology was consid-
ered in [17]. Sparse factor estimates Ĥ can be obtained by solving:

Ĥ = argmin
H

∥∥∥E⊙ (M̂x −HHT )
∥∥∥2

F
+

∑r
ρ=1 λρ∥hρ∥1, (3)

where Ĥ := [ĥ1 . . . ĥr], while E denotes the adjacency matrix
of the WSN communication graph and ⊙ indicates entry-wise
matrix product. The Frobenius term in (3) can be rewritten as∑p

j=1

∑
j′∈Nj∪{j}

(
M̂x(j, j

′)−
∑r

ℓ=1 H(j, ℓ)H(j′, ℓ)
)2

which

involves the entries M̂x(j, j
′) for j ∈ Nj that can be found by

sensor Sj after communicating with its neighbors in Nj .
Relying on block coordinate descent techniques [18, pg. 160]

an iterative minimization algorithm was derived in [17], where the
cost in (3) is recursively minimized wrt an entry of H, while keeping
the remaining elements in H fixed. During one coordinate descent
cycle all the entries of matrix H are updated. In order to update the
(j, ρ)-th entry of matrix H during cycle k, namely Ĥk(j, ρ), all the
entries of H, but H(j, ρ), in (3) are set equal to their most up-to-date
value, denoted as Ȟk(m,n). During cycle k if the (m,n)-th entry
of H is updated, before H(j, ρ) then Ȟk(m,n) = Ĥk(m,n) (the
most recent updated value for H(m,n)). Otherwise, if H(m,n) is
updated after H(j, ρ), then Ȟk(m,n) = Ĥk−1(m,n).

Applying the Karush-Kuhn-Tucker optimality conditions [18,
pg. 316] (details in [17, 19]) Ĥk(j, ρ) is found as the value that re-
sults the minimum possible cost in (3) among the candidate values:
i) h = 0; ii) the real positive roots of the third-degree polynomial

4 · h3 + 4[
∑

µ∈Nj
[Ȟk(µ, ρ)]2 − δkM (j, j, ρ)] · h (4)

+ λρ − [4
∑

µ∈Nj
δkM (j, µ, ρ)Ȟk(µ, ρ)] = 0;

and iii) the real negative roots of the third-degree polynomial

4 · h3 + 4[
∑

µ∈Nj
[Ȟk(µ, ρ)]2 − δkM (j, j, ρ)] · h (5)

− λρ − [4
∑

µ∈Nj
δkM (j, µ, ρ)Ȟk(µ, ρ)] = 0,

where δkM (j, µ, ρ) := M̂x(j, µ)−
∑r

ℓ=1,ℓ ̸=ρ Ȟ
k(j, ℓ)Ȟ(µ, ℓ). Sen-

sor Sj is responsible for forming updates/estimates for the jth row
of matrix H̄, namely {Ĥk(j, 1), . . . , Ĥk(j, r)}. The roots can be
found using standard techniques, e.g, companion matrices [17, 20].
Note that Sj can evaluate the coefficients of the polynomials in (4)
and (5) by exchanging information only with its neighbors in Nj .
Specifically, sensor Sj receives {Ĥk−1(µ, 1), . . . , Ĥk−1(µ, r)}
from its single-hop neighbors µ ∈ Nj and forms δkM (j, µ, ρ). Simi-
larly, Sj transmits to its neighbors the r scalar local updates for the
jth row of H, namely {Ĥk−1(j, 1), . . . , Ĥk−1(j, r)}. In [17,19] is
established that the novel distributed (D-) SMD scheme converges
at least to a stationary point of the cost in (3).

3.1. Deflation-Based D-SMD

The D-SMD formulation developed in [17] involves the estimation
of multiple factors {hρ}rρ=1. Notice that different λρ’s are used to
weigh the factors {hρ}rρ=1. The reason is that each of h̄ρ may have a
different number of nonzero entries since every source sρ(t) affects
a different number of sensors. One challenging and instrumental
step in implementing D-SMD, not sufficiently addressed in [17], is
the systematic selection of pertinent λρ’s that ensure recoverability
of the factors’ support. Cross-validation techniques could be used,
see e.g., [21], though the associated complexity of searching on a
grid of candidate λ-values increases exponentially with r.

The notion of deflation will be used, see e.g., [9,22], to facilitate
the selection of the sparsity-controlling coefficients and reduce its
computational complexity. D-SMD is utilized to numerically solve
(3) for a single factor (r = 1). Let ĥ1 denote the estimate of a single
factor obtained via D-SMD. The next step is to remove the impact of
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ĥ1 from the sample covariance matrix M̆0
x,d := M̂x by forming the

‘deflated’ covariance matrix M̆1
x,d = M̆0

x,d− ĥ1ĥ
T
1 . Then, D-SMD

can be employed again (r = 1) using the deflated covariance matrix
M̆1

x,d to obtain one more sparse factor ĥ2. Since M̆x is multiplied
entry-wise with E in (3), during deflation we can also account for
the missing entries by forming M̂1

x,d = E ⊙ M̂0
x,d − E ⊙ ĥ1ĥ

T
1 .

Notice that E⊙M̆1
x,d = E⊙M̂1

x,d, though M̂1
x,d is preferable since

it contains only the entries that correspond to neighboring sensors.
In general, after deflation step ρ the estimated sparse factor

ĥρ is used to evaluate the deflated covariance M̂ρ
x,d = E ⊙

M̂ρ−1
x,d −E⊙ĥρĥ

T
ρ . Sensor Sj is updating the entries M̂ρ

x,d(j, µ) =

M̂ρ−1
x,d (j, µ)−ĥρ(j)ĥρ(µ) which requires communication only with

the single-hop neighbors in µ ∈ Nj . Then, D-SMD for r = 1 and
covariance E⊙M̂ρ

x,d is applied to evaluate the estimate ĥρ+1. Dur-
ing deflation step ρ + 1 a coordinate descent recursion at sensor Sj

entails: i) Evaluation of {δkM (j, µ, ρ+ 1) = M̂ρ
x,d(j, µ)}µ∈Nj∪{j}

with a computational complexity of the order of O(|Nj |); ii) form-
ing the coefficients of the polynomials at (4) and (5) with a com-
plexity of O(4|Nj |); and iii) determining the roots of the third-order
polynomials in (4) and (5) whose complexity is fixed and does not
depend on the network topology. The complexity at sensor Sj per
coordinate cycle is linearly dependent on |Nj |. The previous steps
are applied recursively during deflation step ρ+1 until the reduction
of the cost in (3) between two consecutive cycles drops below a
threshold ϵ. This is ensured since D-SMD always converges at least
to a stationary point of the cost in (3) (details in [19]). Deflation
can be continued until the diagonal entries of M̂rd

x,d drop below a
desired tolerance value, for a given rd. The deflation-based D-SMD
algorithm is tabulated as Algorithm 1.

Algorithm 1 Deflation-Based D-SMD

1: Sensor Sj initializes M̂0
x,d(j, :) = E(j, :)⊙ M̂x(j, :).

2: for ρ = 1, . . . , rd do
3: Sj sets Ĥ0(j, ρ) = Ĥls(j, ρ), where Ĥls(j, ρ) is obtained via

D-SMD using λ = 0 and M̂x ≡ M̂ρ−1
x,d .

4: for k = 1, 2, . . . do
5: Each Sj: Transmits Ĥk−1(j, ρ) to its neighbors in Nj ,

and receives Ĥk−1(µ, ρ) from µ ∈ Nj .
6: Evaluates {δkM (j, µ, ρ)}µ∈Nj∪{j} and {Ĥk(j, ρ)}rρ=1.
7: If |Cost(k)− Cost(k − 1)| ≤ ϵ then stop.
8: end for
9: Sj forms deflated entries M̂ρ

x,d(j, µ), µ ∈ Nj ∪ {j}.
10: end for

3.2. Selection of λ

Proper selection of the sparsity-controlling coefficients in D-SMD is
critical to determine the support of H̄. A selection scheme is devel-
oped here which works well when the nonzero entries of the under-
lying factors {h̄ρ}rρ=1 do not differ significantly in amplitude. This
is reasonable to assume since the sensors that sense source sρ(t) will
be spatially close given the locality of the source, thus the magnitude
of the nonzero entries of h̄ρ is not expected to vary significantly. The
following result, established in [19], is in order.

Proposition 1 Assume that i) the ensemble Mx is available and
used in the D-SMD formulation in (3) with r = 1, while the nonzero
entries of each factor have the same magnitude, i.e., {|h̄ρ(j)| =

ηρ}rρ=1 for j ∈ support(h̄ρ); and ii) the subset of sensors sensing
sρ(t), form a connected communication subgraph. Further, assume
that the underlying factors have non-overlapping supports, while
any of the square submatrices of {E ⊙ (h̄ρh̄

T
ρ )}rρ=1 have differ-

ent spectral radius for different ρ. Then, the minimizer of (3) , say
ho, either is an all-zeroes vector if λ ≥ λmax, or the support of ho

coincides with the support of one of the underlying factors in H̄ if
λ < λmax and λ is sufficiently large, with λmax denoting the minimum
value of λ that results ho = 0.
In Prop. 1 it is assumed that the nonzero entries of an underlying
factor have the same magnitude. Numerical tests show that Prop.
1 holds even when the nonzero entries of a factor do not have the
same amplitude as long as they do not differ significantly. Prop. 1
suggests that an appropriate value for λ can be obtained after starting
at λmax (or an upper bound), which gives an all-zeroes solution, and
keep decreasing λ until when (3) gives a nonzero solution. Then,
the support of the nonzero solution will correspond to the support of
one of the factors in H̄. The result of Prop. 1 requires knowledge of
the ensemble covariance Mx, though the same result will also hold
approximately when a sufficiently large but finite number of data is
utilized to form M̂x. Thus, when λ is appropriately set and there is a
sufficiently large number of sensor data the deflation-based D-SMD
can recover the support of an underlying sparse covariance factor, or
equivalently determine the sensors sensing a specific source.

Note that λmax does not have to be known and an upper bound
can be used instead. As shown in [19]: λmax ≤ λu = 1.54 ·
[tr(M̂x)]

3/2. The upper bound λu can be computed in a distributed
fashion using, e.g., consensus-based techniques (e.g., see [23]) to
evaluate tr(M̂x) =

∑p
j=1 M̂x(j, j). The latter is possible since

each sensor Sj has available M̂x(j, j). A pertinent λ, using Prop.
1, can be obtained in a distributed fashion as follows. Once sen-
sors evaluate the upper bound λu, then they create the grid of values
Gλ := {λg,1, . . . , λg,J} with λg,J = λu and λg,1 = ϵλu, with ϵ
small, e.g., ϵ = 10−3. Sensors execute the deflation-based D-SMD
for decreasing values of λ, starting from λu. If λg,j corresponds to
a grid value for which D-SMD returns an all-zeroes vector, while
for the grid value λg,j−1 < λg,j there are some sensors that get
nonzero values through D-SMD, then using the property of Prop. 1
the λ-selection process can stop at λg,j−1. The same λ-selection
process can be applied per deflation step.

4. ADAPTIVE IMPLEMENTATION

The deflation-based D-SMD scheme developed in Sec. 3 is a batch
scheme in the sense that D-SMD takes place after the acquisition
of data and evaluation of E ⊙ M̂x. Such an approach is pertinent
when sensors are deployed for exploratory purposes and estimation
performance is more important than real-time processing. When it
comes to applications such as threat detection, the need for adaptive
algorithms that process data online is more prevalent. We build on
the deflation D-SMD framework to derive adaptive implementations
by properly updating covariance M̂x,t.
Stationary setting: The data covariance Σx, and the signal covari-
ance Mx, are time-invariant. The sample-average estimate Σ̂x,t =
(t+ 1)−1 ∑t

τ=0 xτx
T
τ , can be updated recursively as

Σ̂x,t = t(t+ 1)−1Σ̂x,t−1 + (t+ 1)−1xtx
T
t , (6)

and M̂x,t = Σ̂x,t − D̂w. At time instant t sensor Sj utilizes the up-
dating formula in (6) to refine the corresponding single-hop neigh-
boring entries M̂x,t(j, µ) for µ ∈ Nj ∪ {j}. Then, the updated co-
variance entries are plugged in (3) and the deflation-based D-SMD
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is applied to estimate the support of H̄ at time instant t. Notice that
during deflation step ρ in Alg. 1, an indeterminate number of coor-
dinate descent cycles (index k) are applied until convergence. In an
online implementation a small fixed number, say K, of coordinate
descent cycles is applied to facilitate online processing. Numerical
simulations will show that even for K = 1 the adaptive deflation-
based D-SMD can identify the informative sensors after a sufficient
number of data has been acquired.
Non-stationary setting: In a non-stationary environment, e.g.,
when the sources are time-varying, covariance Mx,t as well as the
support of H̄ will also change with time. The data covariance matrix
should be updated in such a way that puts more emphasis on the
recent data, while gradually forgets the old ones. One pertinent way
to do that is using exponential weighing, i.e.,

Σ̂x,t =
∑t

τ=0 β
t−τxτx

T
τ = βΣ̂x,t−1 + xtx

T
t , (7)

and M̂x,t = (1 − β)(1 − βt+1)−1Σ̂x,t − D̂w. The coefficient
β ∈ [0, 1] denotes the forgetting factor that controls the ‘memory’
duration. The scaling performed in Σ̂x,t when forming M̂x,t is done
such that (1−β)(1−βt+1)−1Σ̂x,t+1 is an unbiased estimate of Σx

in a stationary setting, i.e., E
[
(1− β)(1− βt+1)−1 Σ̂x,t

]
= Σx

when E[xτx
T
τ ] = Σx is time-invariant.

As in the batch processing case, the sparsity-controlling coef-
ficients have to be set appropriately. An initialization step can be
incorporated in the adaptive schemes where sensors after acquiring
some data x0, . . . ,xL−1 they apply the λ-selection scheme outlined
in Sec. 3.2. During the operational stage of the adaptive algorithms,
the signal covariance estimate M̂x,t [see eqs. (6) and (7)] changes
with time. Such changes in the covariance imply that λ should also
be updated using the scheme in Sec. 3.2. The faster the covariance
changes, the more frequently λ should be updated. In a stationary
setting the updating of λ can stop after a sufficient number of sensor
measurements have been acquired and M̂x,t is converging to Mx.

5. NUMERICAL TESTS

Here the performance of batch and adaptive deflation-based D-SMD
is compared with the performance of the batch centralized nonneg-
ative factorization schemes in [16] and [13] abbreviated as NMF-L
and NMF-H respectively. The probability of correctly identifying
the support of H̄, namely PD , will be used as a performance metric.
Recall that PD is equal to the probability of identifying the source-
informative sensors as well as correctly determining which sensors
observe a certain source. PD was estimated using 500 Monte Carlo
runs. We consider the r = 3-source and p = 12-sensors setting
depicted in Fig. 1. The nonzero entries of H̄ ∈ R12×3 are ex-
tracted from a Gaussian distribution with mean one and variance
10−3. The λρ coefficients are selected as outlined in Sec. 3.2. Fig.
2 (top) depicts the PD achieved by the batch and online implemen-
tation of D-SMD [using (6)], as well as NMF-H and NMF-L ver-
sus time t for a stationary setting. Note that the batch algorithms
have to run ‘from scratch’ at every time instant t using an amount
of data N = t, whereas the adaptive D-SMD processes recursively
only the new data using one coordinate descent cycle (K = 1) per
t. After a sufficiently large number of data N = t, batch D-SMD
reaches PD = 1, thus corroborating Prop. 1. This is not the case if
sparsity is not exploited (λ = 0), or when NMF-L and NMF-H are
employed since they cannot handle the presence of negative entries
in H̄. Online D-SMD is less computationally demanding than the
batch D-SMD, though is still capable to achieve PD = 1 at a slower
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Fig. 2. Probability of detecting the informative sensors vs. time t for
a stationary setting (top); and a non-stationary setting (bottom).

rate. The jumps in the PD curve of online D-SMD correspond to in-
stances during which λ is updated. The λ-readjusting period is set to
Q = 80. As t → ∞ then M̂x,t → Mx, and λ is fixed for t ≥ 400.

A nonstationary setting is considered next, where the support
and the nonzero entries of H̄t ∈ R12×3 are time-varying. Let H̄t

denote the time-varying factor matrix. For t ≤ 20, H̄t remains
fixed and set as described earlier. The variations taking place in
H̄t are as follows: For t ∈ [21, 200] ∪ [301, 400], H̄t(3, 3) =
0.96·H̄t−1(3, 3), H̄t(3, 1) = H̄t−1(3, 1)+0.4t−T and H̄t(2, 3) =
H̄t−1(2, 3) + 0.4t−T , where T = 20 when t ∈ [21, 200], and
T = 300 when t ∈ [301, 400]. Then, for t ∈ [201, 300]∪ [401, 600]
it holds that H̄t(3, 3) = H̄t−1(3, 3) + 0.4t−T , H̄t(3, 1) = 0.96 ·
H̄t−1(3, 1) and H̄t(2, 3) = 0.96 · H̄t−1(2, 3), where T = 200
when t ∈ [201, 300], or T = 400 when t ∈ [401, 600]. Fig. 2
(bottom) depicts the PD achieved by i) online D-SMD where the co-
variance is tracked via (7) with β = 0.95; ii) same as in i) but no
sparsity exploited (λ = 0); and iii) online D-SMD using (6). As ex-
pected since the covariance M̂x,t is time-varying, the online D-SMD
utilizing (7) performs better than the scheme that utilizes (6) since
the latter is pertinent for stationary settings. Despite the fact that H̄t

is keep changing PD stays above 0.9 most of the time. This is to be
contrasted with the performance achieved for λ = 0 (no sparsity).

6. CONCLUSIONS

The problem of determining sensors that acquire source-informative
measurements was formulated as the task of identifying the support
of sparse covariance factors. To this end, a sparsity-aware matrix de-
composition framework that relies on norm-one regularization was
put forth. Block coordinate descent were employed to minimize the
associated non-convex costs. A deflation-based mechanism com-
bined with a novel way to select the sparsity-controlling coefficients
and adaptive updating of the covariance structure were introduced to
reduce complexity and account for time-varying settings.
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