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ABSTRACT

In cognitive radio (CR) systems, the primary users (PU) are pro-
tected by temperature interference constraints imposed on secondary
users (SU). However, such limitations may be easily violated by SUs
if perfect SU-to-PU channel state information (CSI) is not available
at the secondary transmitters. In this paper, we propose a novel and
distributed design of MIMO CR networks that is robust against im-
perfect SU-to-PU CSI. Specifically, we formulate the system design
as a noncooperative game and robust global interference constraints
are enforced via pricing; the prices are thus additional variables to
be optimized. Building on the advanced and new theory of finite-
dimensional variational inequalities (VI) in the complex domain, we
analyze the proposed NE problem and devise alternative distributed
algorithms along with their convergence properties.

Index Terms— Cognitive Radio System, MIMO System, Tem-
perature Interference Constraints, Variational Inequalities, Worst-
Case Robust Design.

1. INTRODUCTION

Cognitive Radio (CR) [1, 2, 3] is a promising technique that allows
flexible and efficient usage of the scarce radio spectrum, which is,
however, underutilized by the current fixed spectrum assignmen-
t policies. The design of secondary user CR systems has been ad-
dressed in a number of works in different scenarios such as [4, 5, 6,
7, 8, 9, 10], based on either centralized network utility maximization
philosophy [7, 8, 10] or decentralized game theoretical formulations
[4, 5, 6]. The quality of service (QoS) of the PUs is guaranteed by
imposing interference constraints to the SUs; either local interfer-
ence constraints (i.e. at the level of each SU)[4, 9] or global interfer-
ence constraints (i.e., on the overall interference generated by all the
SUs) [5, 6, 7, 8, 10] have been adopted. In the context of MIMO sys-
tems, the analysis is mainly limited to local interference constraints
[4, 9] with the exception of [8], whose proposed algorithms, how-
ever, cannot be implemented in a distributed way. Moreover, all the
aforementioned papers (except [9] in the case of local interference
constraints and [10] in the case of MISO multicast network with
only one secondary transmitter) assume perfect channel state infor-
mation between SUs and PUs (SU-to-PU CSI), which is not realistic
in a real CR scenario, due, e.g., to inaccurate or limited CSI at the
secondary transmitters.

In this paper, we consider for the first time a distributed design
of MIMO cognitive radio systems (composed of an arbitrary num-
ber of PUs and SUs) under worst-case robust global interference
constraints. Aiming at finding distributed algorithms, we formu-
late the system design as a noncooperative game, where each SU
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competes against the others to maximize his own transmission rate
subject to the robust global interference constraints as well as power
constraints. In order to keep the design as decentralized as possible,
the robust global interference constraints are imposed via a proper
pricing mechanism; the prices are thus additional variables to be op-
timized. At equilibrium, they are required to be complementary to
the respective robust interference constraints; that is, a price is posi-
tive only if the robust constraint is violated.

The presence of possibly unbounded price variables and pric-
ing clearing conditions associated with the robust global interfer-
ence constraints as well as the MIMO setting (each user’s strate-
gies are complex matrices) make the analysis of the resulting game
a challenging task. To deal with these difficulties, we hinge on the
recently developed theory of complex variational inequalities [11].
Building on this theory, we study the existence and uniqueness of
the NE as well as design distributed algorithms along with their con-
vergence properties. We also investigate the impact of error in pric-
ing update on the convergence of proposed distributed algorithms.
Numerical results show that our novel game-theoretical formulation
based on robust global interference constraints outperforms (in terms
of achievable sum-rate) current decentralized state-of-the-art design-
s based on (robust) local interference constraints [9]. This new line
of analysis based on VIs in the complex domain is also expected to
be broadly applicable to other game theoretical formulations with
complex optimization variables.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a hierarchical MIMO CR system composed of K PUs shar-
ing the licensed spectrum with a network of Q SUs, modeled as a
MIMO Gaussian Interference Channel (IC). Each SU q is equipped
with Nq and Mq transmit and receive antennas, respectively, and PU
k has Mk receive antennas. Let Hrq ∈ CMr×Nq (resp. Gkq ∈
CMk×Nq ) be the cross-channel between SU q and SU r (resp. PU
k). Under basic information theoretical assumptions, the transmis-
sion rate of SU q can be written as

Rq(Qq,Q−q) , log det
(
I+HH

qqR−q(Q−q)
−1HqqQq

)
(1)

where Qq is the transmit covariance matrix of SU q, Q−q ,
(Qr)r ̸=q , R−q(Q−q) , Rnq +

∑
r ̸=q HqrQrH

H
qr with Rnq ≻ 0

being the covariance matrix of the noise plus the interference from
the PUs. The feasible set of SU q is

Qq , {Qq ≽ 0 : tr(Qq) ≤ Pq} (2)

where Pq is the total transmit power in units of energy per transmis-
sion. Other (convex) power constraints such as peak and per-antenna
average power constraint can be readily incorporated without affect-
ing the forthcoming analysis and results.

In addition to power budget constraints, the SUs are subject to
global interference constraints that are imposed to protect the QoS of
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PUs. We model inaccurate or limited SU-to-PU CSI following the
widely used approach in [9, 12, 13, 14, 15]: the real channel Gkq

lies in the neighborhood of a nominal channel Ĝkq
1. This leads to

the definition of the so-called uncertainty region:

Ukq ,
{
Gkq ∈ CMk×Nq :

∥∥∥Gkq − Ĝkq

∥∥∥
Tkq ,F

≤ εkq

}
(3)

with εkq is the (given) radius of the region, and Tkq is a given posi-
tive definite matrix. It follows from (3) that the worst-case global ag-
gregate interference constraint imposed to the SUs by each PU k is

Q∑
q=1

ϕkq(Qq) ,
Q∑

q=1

max
Gkq∈Ukq

{GkqQqG
H
kq} ≤ Ik, (4)

where Ik is the maximum level of interference tolerable by PU k.
Note that ϕkq(Qq) is convex but non-differentiable. We remark
that other global interference constraints, including (directional) null
constraints, interference constraints over specific directions wk such
as

∑Q
q=1 w

H
k GkqQqG

H
kqwk, and peak average interference con-

straints such as
∑Q

q=1 λmax

(
GkqQqG

H
kq

)
, can be incorporated in

the system and treated using the same methodology we are going to
introduce, see [16] for more details.
System Design. Aiming at finding distributed solution algorithms,
we formulate the secondary system design as a robust noncoopera-
tive game, where each SU aims at maximizing his transmission rate
(1) subject to the power and robust interference constraints (2) and
(4). To keep the system design as decentralized as possible, the ro-
bust global interference constraints are enforced by introducing a
pricing term in the objective function of each user: there is one price
µk ≥ 0 associated with each of the robust global interference con-
straints; the vector of all prices is denoted by µ , (µk)

K
k=1. Stated

in mathematical terms, we have the following priced Nash equilib-
rium problem (NEP): anticipating the rival strategies Q−q and the
price µ, each user q solves

Gµ :
max
Qq

Rq(Qq,Q−q)−
∑K

k=1 µk · ϕkq(Qq)

s.t. Qq ∈ Qq,
(5)

The game is completed with the side constraints to be satisfied by
the price vector µ:

0 ≤ µk ⊥ Ik −
Q∑

q=1

ϕkq(Qq) ≥ 0, ∀ k = 1, . . . ,K, (6)

where a ⊥ b means a ·b = 0. The complementary condition (6) says
that users are penalized only when the resources become scarce; the
price µk is 0 when the interference constraint is strictly satisfied.

Differently from [5, 9, 17], our formulation incorporates robust
global temperature interference constraint, and this leads to sever-
al new and nontrivial difficulties, namely: 1) each user’s objective
function is non-differentiable; 2) the pricing term is nonlinear in the
optimization variables; 3) the optimization variables are complex
matrices. Because of these issues, the NEP Gµ together with (6)
cannot be studied using existing methodologies [5, 9, 17]. Note al-
so that even though each user’s optimization problem is convex, the
game may not have a NE because of the unboundedness of the price
vector. We address these technical difficulties in following sections.

1An estimate of the nominal channel can be obtained at the secondary
transmitters using standard signal processing techniques. For example, in a
time-division duplex (TDD) mode under reciprocity assumption between the
forward and backward channels, the nominal channel can be estimated by
using the pilots sent by the PU receivers when they transmit [10].

3. COMPLEX VARIATIONAL INEQUALITIES

The first step of our analysis is to get rid of the non-differentiability
of the users’ optimization problems by rewriting (5) in the following
equivalent form:

G̃µ :
max
Qq,tq

Rq(Qq,Q−q)−
∑k

k=1 µktkq

s.t. (Qq, tq) ∈ Q̃q,
(7)

where tq , (tkq)
K
k=1 is a vector of slack variables and Q̃q ,

{(Qq, tq) : Qq ∈ Qq, ϕkq(Qq) ≤ tkq, ∀k = 1, . . . ,K}. The com-
plementary condition (6) can be rewritten as:

0 ≤ µk ⊥ Ik −
Q∑

q=1

tkq ≥ 0, ∀ k = 1, . . . ,K. (8)

We will denote the NEP G̃µ with complementary condition (8) as G̃.
To deal with complex matrix variables, we hinge on the so-called

complex VIs, recently introduced in [11], and rewrite the game G̃ as
a complex VI. An alternative approach would be to write the users’
optimization problems in terms of real and imaginary parts of the
original complex variables, which however is very cumbersome and
destroys the structure of the optimization problem.

Definition 1 Given a closed set X ∈ Cn×m and a complex-valued
matrix function FC (X) : X ∋ X → Cn×m, the complex VI prob-
lem, denoted by VI(X ,FC), consists in finding a point X⋆ such that2

(X−X⋆) • FC (X⋆) ≥ 0, ∀X ∈ X , (9)

where A •B , ℜ{tr(AHB)} and ℜ{•} is the real part operator.

Define a complex-valued matrix function FC =
(
FC

q

)Q
q=1

and
the joint strategy setQ as

FC
q (Q) = −∇Q∗

q
Rq(Qq,Q−q),

Q ,
{
(Qq)

Q
q=1 :

Qq ∈ Qq, ∀ q = 1, . . . , Q,∑Q
q=1 ϕkq(Qq) ≤ Ik, ∀k = 1, . . . ,K,

}
,

(10)
where the gradient is with respect to the complex conjugate of Qq .
We have the following connection between the game G̃ and the
VI(Q,FC) [16].

Proposition 2 The game G̃ in (7)-(8) is equivalent to the VI(Q,FC),
which always admits a solution. The equivalence is in the following
sense: if Q⋆ , (Q⋆

q)
Q
q=1 is a solution of the VI(Q,FC), then there

exists a t⋆ , (t⋆kq)k,q with t⋆kq = ϕkq(Q
⋆
q) and a µ⋆ , (µ⋆

k)k—the
multiplier of the VI associated with (4)—such that (Q⋆, t⋆,µ⋆) is an
equilibrium pair of G̃. Conversely, if (Q⋆, t⋆,µ⋆) is an equilibrium
pair of G̃, then t⋆kq = ϕkq(Q

⋆
q) and Q⋆ is a solution of VI(Q,FC)

with µ⋆ being the multiplier associated with (4).

The reformulation of the game G̃ as a VI plays a key role in studying
the existence of the solution. However, it leads to algorithms that,
in principle, require some coordination among the SUs, since the
global interference constraints impose a coupling among strategies
of the SUs (indeed the set Q̃ does not have a Cartesian structure).

2If X and FC(X) are partitioned according to X = (Xq)
Q
q=1 and

FC(X) = (FC
q (X))Qq=1 [such that Xq • FC

q (X) is well-defined for all

q = 1, . . . , Q], then (9) is interpreted as
∑Q

q=1(Xq − X⋆
q) • FC

q (X) ≥
0, ∀X ∈ X .
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Algorithm 1: Jacobi Best-Response Algorithm for G̃µ
Data: Q(0)

q ∈ Qq for q = 1, . . . , Q.
S.0: Set n = 0.
S.1: If Q(n) satisfies a termination criterion: STOP.
S.2: For each q = 1, . . . , Q, compute (Q

(n+1)
q , t

(n+1)
q ) as

(Q(n+1)
q , t(n+1)

q ) = argmax
(Qq,tq)∈Q̃q

Rq

(
Qq,Q

(n)
−q

)
−

k∑
k=1

µktkq.

S.3: n← n+ 1 and go back to S.1.

To deal with this issue, we rewrite the VI(Q,FC)-the game G̃-in an
equivalent but more convenient form. More specifically, denoting
by (Q⋆(µ), t⋆(µ)) the NE of the game G̃µ for a given µ ≥ 0, and
introducing the worst-case interference violation function M(µ):

M(µ) ,
(
Ik −

Q∑
q=1

t⋆kq(µ)
)K

k=1
,

the game G̃ can be written in the following equivalent form [16].

Proposition 3 Suppose G̃µ has a unique NE for any given µ ≥
0. Then G̃ is equivalent to the following nonlinear complementary
problem (NCP):

0 ≤ µ ⊥ M(µ) ≥ 0. (11)

The NCP reformulation offers the possibility of devising iterative al-
gorithms that can be implemented in a distributed fashion among all
users and whose convergence can be studied using results from the
theory of VIs. In the following, we preliminarily introduce distribut-
ed algorithms solving the game G̃µ [which allows the computation of
M(µ) in (11)]; then, building on this result, we focus on distributed
algorithms for the NCP (11) (and thus the original game G̃).

4. DISTRIBUTED ALGORITHMS FOR G̃µ

In this section we study distributed algorithms for the game G̃µ, giv-
en µ ≥ 0. Before stating the main results, we introduce some pre-
liminary definitions. A matrix A is called a P -matrix if every prin-
ciple minor of A is positive (a positive definite matrix is also P , but
the converse in general is not true) [18]. Let us introduce the matrix
Υ, which is essential in the convergence of distributed algorithms:

[Υ]qr =

{
1, if q = r,

−ρ
(
H†H

qq HH
qrHqrH

†
qq

)
· INNRqr, if q ̸= r,

where Hqq is assumed to be full column rank, A† is the Moore-
Penrose pseudoinverse of A, ρ(A) is the spectral radius of A, and

INNRqr ,
ρ
(
Rnq +

∑Q
q=1 PqHqrH

H
qr

)
λmin

(
Rnq

) .

To solve the game G̃µ, we propose best-response schemes: all
the users, according to a given schedule (e.g., sequentially or simul-
taneously) solve their own optimization problems (7). The Jacobi
version of such a class of algorithms is described in Algorithm 1 be-
low; the more general asynchronous implementation is discussed in
[16]. Convergence conditions (valid also for the asynchronous im-
plementation) are given in Theorem 4, whose proof is given in [16].

Theorem 4 The NEP G̃µ always has a NE. Moreover if Υ is a P -
matrix, 1) the NE is unique, and 2) the sequence {Q(n), t(n)} gen-
erated by Algorithm 1 globally converges to the unique NE.

On the convergence conditions. One sufficient condition for Υ to be
P is that there exists a w > 0 such that at least one of the following
two conditions is satisfied:

1

wq

∑
r ̸=q

wr

{
ρ
(
H†H

qq HH
qrHqrH

†
qq

)
· INNRqr

}
< 1, ∀ q,

1

wr

∑
q ̸=r

wq

{
ρ
(
H†H

qq HH
qrHqrH

†
qq

)
· INNRqr

}
< 1, ∀ r.

(12)

The above conditions have an interesting physical interpretation: the
uniqueness of the NE as well as the convergence of best-response
algorithms are guaranteed if the interference among the SUs is suf-
ficiently small. Specifically, the first conditions in (12) can be inter-
preted as a constraint on the maximum amount of interference that
each receiver can tolerate, whereas the second conditions impose an
upper bound on the maximum amount of interference that each trans-
mitter can generate. Note that the above conditions are independent
of the price vector µ.
Implementation issues. Algorithm 1 is a distributed algorithm. In-
deed, given the price µ, to compute the best response, each SU only
needs to locally measure the covariance matrix of the interference
plus noise. To simplify the computational complexity of each best-
response [the maximum-value function ϕkq(Qq) makes the single-
user optimization in (7) intractable], we rewrite each optimization
problem in (7) in the following equivalent form, which is amenable
for many solvers in the market (as, e.g., SeDuMi [19]):

max
Qq,tq,ηq

Rq(Qq,Q−q)−
∑K

k=1 µktkq

s.t. Qq ∈ Qq,ηq ≥ 0,[
Akq(ηkq,Qq) −bkq(Qq)

−bkq(Qq)
H ckq (tkq, ηkq,Qq)

]
≽ 0, ∀ k.

where Akq(ηkq,Qq) , (ηkqTkq − Qq)
T ⊗ I, bkq(Qq) ,

vec(ĜkqQq), ckq(tkq, ηkq,Qq) , tkq−ηkqε
2
kq− tr(ĜkqQqĜ

H
kq).

5. DISTRIBUTED ALGORITHMS FOR G̃

Building on the results in previous sections, we show now how to
solve the NCP (11), resulting in distributed algorithms to compute a
NE of the original game G̃.

Suppose that Υ is a P -matrix; then it follows from Theorem 4
and Proposition 3 that the game G̃ is equivalent to the NCP (11).
We can then focus on algorithms solving the NCP (11). To study
convergence of such algorithms, we need the following intermediate
property of the mapping M(µ), proved in [16].

Lemma 5 If Υ ≻ 0, there exists a constant ccoc > 0 such that(
M(µ1)−M(µ2)

)T (
µ1 − µ2) ≥ ccoc

∥∥M(µ1)−M(µ2)
∥∥2

2

for any µ1 ≥ 0 and µ2 ≥ 0.

An explicit characterization of ccoc can be found in [16]. The co-
coercivity property above is a sufficient condition to guarantee con-
vergence of projection algorithms to solve the NCP (11) [17]. An
instance of such algorithms is given in Algorithm 2, and its conver-
gence conditions are in Theorem 6.
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Algorithm 2: Projection Algorithm with Variable Stepsizes
Data: µ(0) ≥ 0.
S.0: Set n = 0.
S.1: If µ(n) satisfies a termination criterion: STOP.
S.2: Given µ(n), compute the unique NE of G̃µ(n) by Algorithm 1.
S.3: Choose a stepsize γ(n) > 0 and update the price vector as

µ(n+1) =
[
µ(n) − γ(n)M(µ(n))

]+
. (13)

S.4: n← n+ 1 and go back to S.1.

Theorem 6 Suppose that Υ ≻ 0 and 0 < γ(n) < 2ccoc. Then the
sequence {µ(n)} generated by Algorithm 2 converges to a solution
of the NCP (11).

Practical implementation issues. Note that M(µ) represents the
worst-case interference violation at the PUs corresponding to the
price value µ. If this quantity was available at the primary receiver,
the PUs could then compute the price update (13) and broadcast the
new price to the SUs. In practice, however, the PUs can only mea-
sure the instantaneous interference, which is typically different from
the worst-case interference. The resulting price update becomes

µ(n+1) =
[
µ(n) − γ(n)

(
M(µ(n)) + e(n)

)]+
, (14)

where en is an error vector quantifying the deviation of the instanta-
neous interference violation from the worst-case one.

If the uncertainty region Ukq [cf. (3)] is large enough to include
all possible realizations of the real channel Gkq , the actual interfer-
ence is smaller than the worst-case interference and e(n) ≤ 0. In
this case, there is no guarantee on the convergence of Algorithm 2.
We investigate Algorithm 2 with (14) and a constant stepsize γ(n) =
γ < 2ccoc assuming that ∥e(n)∥ ≤ δ for a positive scalar δ.

Proposition 7 Suppose that the error vector e(n) is bounded such
that ∥e(n)∥2 ≤ δ < +∞, and conditions in Theorem 6 are satisfied.
Then the sequence {µn} generated by Algorithm 2 with (14) under
a constant stepsize γ(< 2ccoc) will stay in a bounded neighborhood
of µ⋆ [the solution of the NCP (11)] specified by{
µ : ∥µ− µ⋆∥2 −

√
∥µ− µ⋆∥22 − γ ∥M(µ)−M(µ⋆)∥22 ≤ γδ

}
where γ , 2ccocγ − γ2.

If the uncertainty region Ukq is not large enough, the actual in-
terference can sometimes be higher than the theoretic worst-case in-
terference and e(n) ≥ 0. Surprisingly, in this case, the effect of
error can eventually be eliminated by adopting a proper diminishing
stepsize rule for γ(n); see [16] for more details.

6. NUMERICAL RESULTS

We consider a cellular system composed of one base station, the PU,
and 4 secondary communication links. The PU has 4 receive anten-
nas, while the SUs have 4 transmit antennas and 4 receive antennas.
We assume equal power budget and white Gaussian noise for all the
SUs; the SNR for each SU is 10dB.

We first compare the robust global approach [Algorithm 2] with
the classical nonrobust iterative waterfilling algorithm (IWFA) [Al-
gorithm 1 with µk = 0 in (5) and εkq = 0 in (3)], cf. [20], and the
nonrobust global approach [Algorithm 2 with εkq = 0 in (3)]. In
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Figure 1 we plot the worst-case interference versus iteration index
of the outer loop of Algorithm 2 [with IWFA being the benchmark].
Figure 1 shows that the nonrobust design inevitably result in a vio-
lation of the global temperature interference constraint, whereas, the
robust global design guarantees that the global temperature interfer-
ence constraint is always satisfied.

In Figure 2 we compare the performance of the proposed robust
global approach [Algorithm 2 with (13)] with the classical IWFA
[20] and the robust local approach [9] in terms of sum rate versus in-
terference limit. It is easy to see that the proposed robust global ap-
proach outperforms the robust local approach. This is because global
interference constraints provide more flexibility than local interfer-
ence constraints, which instead impose constraints at the level of
each SU (the more SUs there are, the more restrictive the local inter-
ference constraints would be). In practice, the robust local approach
may result in an even worse performance since when the number of
SUs is unknown, a conservative estimate would be used, which may
be much larger than the real number of SUs there are.

7. CONCLUSIONS

In this paper, we have proposed a robust and decentralized design for
CR systems composed of multiple primary and secondary users over
MIMO IC. The lack of perfect SU-to-PU CSI has been studied under
the philosophy of worst-case robustness. We formulated the CR net-
work design as a pricing game, where the SUs play a NEP with giv-
en prices and the PUs set prices so that the robust global interference
constraints are satisfied at the equilibrium of the game. Building on
the theory of complex VIs, we showed that the pricing game always
has an equilibrium, and proposed distributed algorithms converging
(under technical conditions) to the unique NE of the game.
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