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ABSTRACT

This paper addresses the problem of correlation due to redundancy

in cooperative spectrum sensing networks and proposes an algorithm

for topology design which improves significantly detection perfor-

mance. In a recently proposed two-step distributed scheme, redun-

dancy occurs when some nodes contribute more than once for the

consensus decision, leading to correlation and consequently degrad-

ing performance in the same way as correlated shadowing. To elim-

inate this type of correlation, we employ two different topologies,

primary and complementary, one for each cooperation step. Topol-

ogy design is accomplished in a distributed manner by stating criteria

for user selection. Results show that the proposed double-topology

scheme suppresses redundancy and offers similar performance when

compared to the case of independent node contributions.

Index Terms— Cognitive radio, spectrum sensing, distributed

detection, user selection, redundancy

1. INTRODUCTION

Cognitive radio (CR) is the enabling technology for dynamic spec-

trummanagement. Improving spectrum efficiency through cognition

is achieved by letting secondary users (SUs) to opportunistically ac-

cess the transmission channel when primary users (PUs), who detain

the ownership of the radio resources, are disconnected [1]. To reli-

ably detect frequency holes for communication and avoid interfer-

ence, each SU employs spectrum sensing and, based on the sensed

data, decides if a PU is present or not in a given frequency band.

A vast literature on the spectrum sensing has demonstrated that

cooperative networks notably improve the overall detection perfor-

mance [2, 3]. In these networks, some SUs (or nodes) share informa-

tion among themselves to render a joint and more reliable decision

about the PU activity, due to exploitation of spatial diversity. Co-

operation can be done in a centralized manner, in which a fusion

center collects all the individual sensing data, fuses them and makes

the decision. Alternatively, in a distributed strategy, the nodes can

be divided in neighborhoods (e.g., defined by the transmission ra-

dius) and information sharing is performed directly, and only, among

nodes within the same neighborhood.

Despite the type of network considered – centralized or dis-

tributed –, one key issue in cooperative spectrum sensing is user

selection: how to properly choose which nodes will cooperate in

the network [3]. Prior work in this field was triggered by differ-

ent motivations. Since many cooperating users incur system over-

head and energy consumption, the authors in [4] fix probabilities of

false alarm and detection and find optimal numbers of nodes that
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still meet the targeted values. Results show that best performance

is not necessarily achieved by cooperating all the nodes, but only

those with the highest signal-to-noise ratio (SNR). In [5], differ-

ent clustering methods for distributed networks are proposed to de-

limit cooperation footprints and meet the bandwidth and power re-

quirements set in each cluster. Techniques to identify and remove

malfunctioning or malicious nodes from cooperation are proposed

in [6, 7]. The deleterious effect of correlation due to shadowing [2],

which occurs when cooperating nodes experience similar shadow-

ing effects, has also been addressed through user selection. Three

methods in [8] consider different degrees of knowledge about user

position to select only independent nodes separated by a “decorrela-

tion distance”, which is estimated from a correlation measure. In [9],

a distributed selection algorithm monitors iteratively the spatial cor-

relation among users without requiring any position information.

Recent work [10] proposes a strategy for distributed spectrum

sensing in which information sharing is performed in two steps (soft

and hard combining). This simple strategy performs better than cen-

tralized schemes and represents an alternative to most distributed

solutions in the literature, which usually require several iterations

among nodes for a joint decision. However, such two-step strat-

egy may introduce another type of correlation, correlation due to

redundancy, which occurs when some neighbors contribute more

than once for decision. Redundancy appears directly and indirectly

in these networks: direct redundant neighbors of a node include it-

self and those linked to it in both steps; indirect redundant neigh-

bors are not directly connected to the node but contribute to two or

more neighborhoods linked to it in both steps. These two classes

of neighbors induce correlation in the consensus decision, degrading

the sensing performance in the same way as when fusing correlated

information due to shadowing. Moreover, different levels of correla-

tion due to redundancy experienced by each node may lead to large

performance variation across them.

In order to eliminate direct and indirect redundancies, we ad-

dress the correlation due to redundancy as a user-selection problem

in this paper. In addition to the two-step cooperation aforemen-

tioned, we propose to use two different topologies – primary and

complementary –, one for each step: soft and hard. Proper design

of such primary and complementary topologies is ensured by stating

some criteria for node selection. Advantages of using this new strat-

egy include more uniform detection performance among all users,

increased number of nodes participating in the consensus decision

and, most importantly, complete suppression of redundancy.

The performance of the proposed double-topology scheme is

evaluated through simulations in a cognitive network with nodes un-

der uncorrelated and correlated shadowing, and comparisons with

the single-topology strategy in [10] are made. Results, presented in

terms of complementary receiver operating characteristics (C-ROC),

show a considerable improvement in detection performance when

correlation due to redundancy is mitigated from the network.
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Fig. 1. Primary topology for the soft combining step. Primary neigh-

borhoodsN4,1 andN9,1 are highlighted.

2. CORRELATION DUE TO REDUNDANCY

The proposed strategy for distributed cooperation in [10] considers

a cognitive network composed of M spatially distributed secondary

users. During a sensing interval, each node, say Node k, employs

energy detection [11] and senses the environment under hypothesis

H0 (absence of primary signal) or hypothesis H1 (presence of pri-

mary signal). To achieve a local consensus decision, Node k shares

its sensing data with a fixed neighborhood, Nk, defined as the set of

nodes, including itself, linked to it, within a transmission radius [12].

Information sharing with the neighbors inNk holds during the entire

detection process, which is divided in soft and hard combining steps.

In the soft combining step, direct soft information (e.g., energy

estimates) from neighbors is fused. For this purpose, linear combi-

nation [13] is usually adopted in which the test statistic is obtained

after a weighted average of individual sensing data. Considering

neighborhood Nk with node degree |Nk|, the local test statistic at

Node k is produced by

T (yk) =
∑

i ∈ Nk

wiyi = w
T
kyk

uk=1(H1)

R
uk=0(H0)

γk, (1)

where wk = [w1, w2, . . . , w|Nk|]
T and yk = [y1, y2, . . . , y|Nk|]

T

contain the respective weights and energy estimates in Nk. The test

T (yk) is then compared to a local threshold γk to yield a local bi-

nary decision, uk. Existing techniques for obtaining the weight vec-

torwk and the threshold γk should be used in this step. The authors

in [13, 14] find optimal parameters for linear combination by treating

it as an optimization problem. In [10], we employ a simple adaptive

combiner with online decision using the LMS algorithm [15], of-

fering performance close to that of the optimal linear combiner. A

variation of such LMS combiner, featuring selective updating and

reduced processing, was published in [16].

In the hard combining step, local binary decisions from neigh-

bors are fused in order to render local consensus decisions. Conven-

tional voting rule (m-out-of-|Nk|) [2] should be employed at each

node: considering the particular case m = 1 (OR-fusion rule), used

in [10], Node k decides that H1 holds if at least one of the |Nk|
neighbors has suggested H1. Thus, the final detection performance

at Node k after this second step can be measured by

Pf,k,2 = 1− P (uk = [0, 0, . . . , 0]|H0), (2a)

Pd,k,2 = 1− P (uk = [0, 0, . . . , 0]|H1), (2b)

where uk ∈ {0, 1}
|Nk| are the local binary decisions of Nk, taken

during the first step.

The inconvenience of a fixed network topology for the two-step

cooperation process comes from the fact that local binary decisions
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Fig. 2. Complementary topology for the hard combining step. Com-

plementary neighborhoodsN4,2 andN9,2 are highlighted.

of neighbors acquire correlation after soft combining. To better ex-

plain this effect, we first denoteNS,k as the set of direct and indirect

neighbors that contribute to the consensus decision of Node k in

the single-topology strategy. Let us consider the neighborhoods of

Nodes 9 and 4, N9 = {3, 9, 11} and N4 = {4, 7, 12}, highlighted
in Fig. 1. The binary decision of Node 9, u9, is correlated with the

binary decision of Node 3, u3, because both carry the sensing influ-

ence (energy estimate) of each other. The same occurs between bi-

nary decisions u9 and u11. Moreover, the binary decisions of Nodes

3 and 11, u3 and u11, also acquire correlation as they carry the same

sensing influence of Node 9 and also that of Node 1, which is linked
to both simultaneously. If N9 is kept the same for hard combin-

ing, the consensus decision taken by Node 9 after fusing u3, u9 and

u11 will carry the sensing influence of the set of direct and indirect

neighbors NS,9 = {1, 3, 9, 11}, where Nodes 3, 9 and 11 are direct

redundant neighbors, and Node 1 is an indirect redundant neighbor.

Fusion of such correlated data in the second step will degrade the

detection performance at Node 9 in the same way as if the source

of correlation were shadowing. Similarly, one can observe the set of

direct and indirect neighbors of Node 4 employing single-topology,

NS,4 = {2, 4, 6, 7, 12}, where indirect neighbors 2 and 6 are non-

redundant, but direct neighbors 4, 7 and 12 are redundant and will

induce correlation in the consensus decision of Node 4.
To properly evaluate the final probabilities Pf,k,2 and Pd,k,2 at

Node k in (2) by taking into account the correlation, the Bahadur-

Lazarsfeld expansion must be used [17]. A more general expression

for P (uk|Hh) in (2),

P (uk|Hh) =
∏

i,j,l,... ∈ Nk

P (ui|Hh)

[

1 +
∑

i<j

ρhijz
h
i z

h
j +

∑

i<j<l

ρhijlz
h
i z

h
j z

h
l + . . .+ ρh12...|Nk|z

h
1 z

h
2 . . . zh|Nk|

]

, (3)

is given as a function of the correlation coefficients, ρh, of the

neighbors’ binary decisions conditioned on hypothesis Hh, h ∈
{0, 1} [17]. In its turn, zhi correspond to the binary random vari-

able ui normalized conditioned on Hh. More details about the

Bahadur-Lazarsfeld expansion can be found in [17, 10].

We emphasize that both sources of correlation – shadowing and

redundancy – account for the correlation coefficients in (3). This

suggests that existing hard combining methods to deal with correla-

tion due to shadowing, such as the optimal fusion rule in [17] or the

suboptimal linear-quadratic detector in [18], would perform better

than the voting rule also for the correlation due to redundancy. Nev-

ertheless, in this work, we keep the simplicity of the voting rule and

show that redundancy can be eliminated through user selection.
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Table 1. Sequential algorithm for topology design (T = 1, 2).

initializeNk,T ← {k}
for iteration n

for Node k, not yet chosen at iterat. n
(1) Node k calls any i ∈ Ck,T [n], not yet chosen at iterat. n
(2) Node i checks: if k /∈ Ci,T [n], back to (1). Else,

(3) Node k receives Ci,T [0]:
Nk,T ← Nk,T ∪ {i}
Ck,T [n+ 1]← Ck,T [n] ∩ Ci,T [0]
Node i receives Ck,T [0]:
Ni,T ← Ni,T ∪ {k}
Ci,T [n+ 1]← Ci,T [n] ∩ Ck,T [0]

end

end

3. DOUBLE-TOPOLOGY SCHEME

To address the problem of redundancy, we employ two different dis-

tributed topologies, called primary and complementary, one for each

cooperation step. According to this strategy, Node k performs soft

combining within a primary neighborhood, Nk,1, and then switch

to another complementary neighborhood, Nk,2, for hard combin-

ing. The complementary topology is directly related to the primary

topology, and both can be generated by the network in a distributed

manner, according to the guidelines presented in the following.

3.1. Primary Topology

For the primary topology design, each node first selects its possible

primary neighbors. Up to this point, any criterion for user selection

can be adopted. For example, in the context of correlated shadow-

ing, each node may recur to those algorithms for estimation of spa-

tial correlation in [8, 9]. In this paper, we consider, for simplicity,

that spatially adjacent nodes are more likely to suffer from corre-

lated shadowing and thereby should be avoided in the same primary

neighborhood. Using this criterion, and assuming that node indexing

corresponds to node position, we define the initial primary candidate

set of Node k (set of candidates to take part inNk,1) as

Ck,1[0] = {i : 1 < |i− k| < M − 1} . (4)

Following, the cognitive network runs the sequential algorithm

presented in Table 1 to generate the primary topology in a distributed

manner: at each iteration n, Node k calls any of the candidates i
in Ck,1[n]; upon Node i checking that Node k is also a candidate

in Ci,1[n], both include each other in their primary neighborhoods.

Node k then updates its primary candidate set Ck,1[n + 1] with the

received Ci,1[0]. The same is done by Node i with its primary can-

didate set Ci,1[n+ 1] and the received Ck,1[0]. The iterative process
continues until either any candidate set becomes empty or the desired

node degree (equal for all neighborhoods) is reached. The primary

topology of Fig. 1 was generated using such algorithm, with desired

uniform node degree set to |Nk,1| = 3. Note that every primary

neighborhood satisfies the criterion stated in (4).

3.2. Complementary Topology

For the complementary topology design, we consider possible com-

plementary neighbors of Node k the nodes whose primary neighbors

do not coincide with any primary neighbor of Node k. The initial

complementary candidate set of Node k is, therefore, given by

Ck,2[0] = {i : Ni,1 ∩ Nk,1 = ∅} . (5)

The distributed sequential algorithm in Table 1 is used to form

the complementary topology. Fig. 2 shows a possible complemen-

tary topology associated to the primary topology of Fig. 1, with de-

sired uniform node degree also set to |Nk,2| = 3. Note, with the

help of Fig. 1, that every complementary neighborhood satisfies the

criterion stated in (5).

3.3. Suppression of Redundancy

To illustrate the benefits of the proposed double-topology scheme,

let ND,k be the set of direct and indirect neighbors that contribute

to the consensus decision of Node k using a double-topology. Fur-

ther, consider the complementary neighborhoods of Nodes 9 and 4,
N9,2 = {7, 9, 10} and N4,2 = {4, 5, 11}, highlighted in Fig. 2. In

the second step, Node 9 fuses the binary decisions u7, u9 and u10,

which in turn carry the sensing influence of nodes from their respec-

tive primary neighborhoods: u7 from N7,1 = {2, 4, 7}, u9 from

N9,1 = {3, 9, 11} and u10 from N10,1 = {5, 8, 10} (see Fig. 1).

The consensus decision produced by Node 9 thus carries the sens-

ing influence of a set of direct and indirect non-redundant neighbors,

ND,9 = {2, 3, 4, 5, 7, 8, 9, 10, 11}. Similarly, one can observe that

Node 4 also receives the sensing influence of a set of direct and indi-
rect non-redundant neighbors, ND,4 = {1, 2, 4, 5, 7, 9, 10, 11, 12}.
The proposed double-topology scheme, using the criterion in (5),

suppresses redundancy from the network, at least up to a single hop.

If the nodes are also free of correlated shadowing, all correlation

coefficients in (3) become zero. This reduces the final probabilities

at Node k after hard combining withinNk,2 in (2) to the expressions

for OR-fusion with independent neighbors’ local decisions [4],

Pf,k,2 = 1−
∏

i ∈ Nk,2

(1− Pf,i,1), (6a)

Pd,k,2 = 1−
∏

i ∈ Nk,2

(1− Pd,i,1), (6b)

by noting thatP (ui = 0|H0) = (1− Pf,i,1) andP (ui = 0|H1) =
(1− Pd,i,1); and Pf,i,1 and Pd,i,1 are the probabilities at each Node

i ∈ Nk,2 after soft combining withinNi,1, both defined in [10].

Another advantage of this proposed strategy is that more users

contribute for decision. For the consensus decision of Node 9, for
example, the number of participating nodes increases from |NS,9| =
4 (with single-topology) to |ND,9| = 9 (with double-topology); for

Node 4, this number increases from |NS,4| = 5 to |ND,4| = 9. Note
that such improvement is obtained without increasing the number of

connections per node, which could lead to more system overhead.

4. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed double-

topology strategy for distributed spectrum sensing in cognitive net-

works. For the simulations, each Node k produces 106 energy esti-

mates under equal occurrence ofH0 andH1, according to the Gaus-

sian statistical model for yk proposed in [13]. In order to see the

effects of correlation, all nodes experience the same SNR in their

estimates, 0 dB. We consider the two different scenarios wherein

nodes suffer from uncorrelated and correlated shadowing. To simu-

late the correlated case, we use E[(yi − µi,h)(yj − µj,h)] = 0.5,
where i and j are index of spatially adjacent nodes, and µi,h and µj,h

are, respectively, the means of the random variables yi and yj under
hypothesisHh, both defined in [13]. Results are measured with sin-

gle detection, distributed two-step single-topology cooperation pro-

posed in [10], and the two-step double-topology scheme proposed
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Fig. 3. C-ROC performance at Node 4 employing single detec-

tion and distributed two-step cooperation with single and double-

topology: uncorrelated shadowing.

in the previous section. For the single-topology simulation, the pri-

mary topology of Fig. 1 is fixed for both soft and hard combining

steps; for the double-topology simulation, the network switches to

the complementary topology of Fig. 2 in the hard combining step.

Figs. 3 and 5 show, respectively, the resulting C-ROC curves of

Nodes 4 and 9 for the case of uncorrelated shadowing. With single-

topology, we see that the performance degradation is slightly higher

in Node 9 as it suffers from correlation due to both direct and in-

direct redundancies. On the other hand, the curves obtained with

double-topology match the optimal curves for independent neigh-

bors’ contributions, confirming the redundancy mitigation capabil-

ity of the proposed scheme. Final detection performance observed

with double-topology is the same for all nodes, as expected with

equal SNR. Nevertheless, we emphasize that using double-topology

suppresses redundancy and promotes increased node participation in

the consensus decisions. Moreover, if the number of connections per

node is uniform, the amount of participating nodes is equal for every

consensus decision (in this case, 9 out of 12 nodes). Such features

help to make detection performance more uniform over the network

even in scenarios of different SNR, in contrast to the disparate re-

sults of Nodes 4 and 9 in [10], by a single-topology without proper

topology design.

Finally, Figs. 4 and 6 plot the respective C-ROC curves of Nodes

4 and 9 corresponding to the correlated shadowing simulation. Note

that the proposed double-topology scheme still outperforms the

single-topology approach. However, both strategies are now suf-

fering from correlation. In the example of Node 9, single-topology
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Fig. 4. C-ROC performance at Node 4 employing single detec-

tion and distributed two-step cooperation with single and double-

topology: correlated shadowing.
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Fig. 5. C-ROC performance at Node 9 employing single detec-

tion and distributed two-step cooperation with single and double-

topology: uncorrelated shadowing.

suffers only from correlation due to redundancy (note that NS,9

contain only non-adjacent nodes), whereas double-topology suffers

only from correlation due to shadowing (ND,9 contain some adja-

cent nodes). This is because the criterion for complementary user

selection stated in (5) only deals with redundancy, not with shadow-

ing. Despite this fact, one can introduce more criteria in (5) to avoid

selection of complementary adjacent neighbors, thus eliminating

both effects (redundancy and shadowing) and matching again the

performance of the optimal independent C-ROC curves.

5. CONCLUSION

This paper proposed the use of a two-step double-topology cooper-

ation scheme for distributed spectrum sensing networks. With this

new strategy, each node performs soft combining within a primary

neighborhood and hard combining within a complementary neigh-

borhood. The main purpose is to avoid the degrading effect of cor-

relation when direct and indirect redundant neighbors contribute to

the consensus decision. We proposed criteria for determining pri-

mary and complementary neighbor candidates and a simple sequen-

tial algorithm for topology design in order to generate both con-

figurations in a distributed manner. Results showed that the pro-

posed double-topology scheme mitigates correlation due to redun-

dancy from the network, thus offering superior performance when

compared to single-topology approaches and leading, in the absence

of correlated shadowing, to results equivalent to that for independent

neighbors’ contributions.
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Fig. 6. C-ROC performance at Node 9 employing single detec-

tion and distributed two-step cooperation with single and double-

topology: correlated shadowing.
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