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ABSTRACT

The recently introduced framework of cooperative simultaneous

localization and tracking (CoSLAT) combines Bayesian cooperative
agent self-localization with distributed target tracking. The original
CoSLAT algorithm suffers from high computation and communica-
tion costs because it uses a particle-based message representation.
Here, we propose an advanced hybrid particle-based and paramet-

ric message passing algorithm for CoSLAT in which both costs are
significantly reduced. Simulation results show that the localiza-
tion/tracking performance is not affected.

Index Terms— Distributed target tracking, cooperative localization,
CoSLAT, nonparametric belief propagation, likelihood consensus.

1. INTRODUCTION

Contribution and relation to previous work. In decentralized
agent networks, the tasks of cooperative self-localization (CSL) [1,
2] and distributed target tracking (DTT) [3] are closely related, since
(i) to contribute to DTT, an agent needs to possess information about
its own location, and (ii) the performance of CSL may be improved if
the agents possess information about the location of a target. There-
fore, devising joint CSL-DTT schemes is a promising approach.

In CSL, each cooperative agent (CA) measures its own location
relative to neighboring CAs and estimates its own location by coop-
erating with other CAs [1,2,4–7]. In DTT, each CA acquires a mea-
surement that is related to the state of a target, and it cooperatively
estimates that state from the measurements of all CAs [3, 8–10]. Si-

multaneous localization and tracking (SLAT) [11–16] is a first at-
tempt to combine self-localization and DTT. In SLAT, the CAs si-
multaneously track a target and localize themselves, however with-
out using inter-CA distance measurements.

The recently introduced framework of cooperative simultaneous

localization and tracking (CoSLAT) [17] provides a coherent com-
bination of CSL and DTT. CoSLAT extends SLAT by using also
inter-CA distance measurements. In [17], a distributed Bayesian
message passing algorithm for CoSLAT was proposed. This algo-
rithm integrates DTT in nonparametric belief propagation (NBP)
based CSL [4, 18]. Its main advantage over previously proposed
algorithms is a probabilistic information transfer between CSL and
DTT, which allows CSL and DTT to support each other and thus can
yield significant gains in both self-localization and target tracking
performance [17]. However, just as NBP-based CSL [2, 4, 18], the
algorithm has high computation and communication costs because it
uses a particle-based message representation for self-localization.

Here, we propose an advanced CoSLAT algorithm that achieves
significant savings in both communications and computation through
the use of parametric inter-CA messages (as introduced in [18], al-
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though the parameters are determined differently) and a simpler
procedure to perform a message multiplication operation. In a two-
dimensional (2D) setting, the communication cost is reduced by
about an order of magnitude. Furthermore, the computational com-
plexity scales only linearly with the number of particles, rather than
quadratically as in the case of the algorithm of [17].

Paper outline. The system model is described in Section 2. In Sec-
tion 3, the CoSLAT problem and the algorithm of [17] are reviewed.
The proposed improved CoSLAT algorithm is developed in Section
4. Finally, simulation results are presented in Section 5.

2. SYSTEM MODEL

We consider a network of K CAs and one target agent, as shown in
Fig. 1. The target agent is noncooperative, i.e., it does not take part
in the CoSLAT process. All agents may be mobile. We index them
by k ∈A= {0, . . . ,K}, where k=0 designates the target and k ∈

A∼0,A\{0} the CAs. Typically, a small subset of static “anchor”
CAs have perfect knowledge of their location. The state xk,n of
agent k ∈ A at time n ∈ {0, 1, . . .} comprises the current location
and, possibly, additional motion parameters [19]. The evolution of
the states xk,n is described by the state transition probability density
functions (pdfs) f(xk,n|xk,n−1) and the prior pdf f(xk,0).

The communication and measurement topologies are character-
ized by (generally time-dependent) sets Cn, Mk,n, and Tn. Specifi-
cally, two CAs k, l ∈A∼0 are able to communicate with each other if
(k, l)∈ Cn ⊆A∼0×A∼0. Here, Cn is symmetric, i.e., if (k, l)∈ Cn,
then (l, k) ∈ Cn. Furthermore, CA k ∈ A∼0 acquires a measure-
ment yk,l;n of its distance to CA l ∈ A∼0, with (k, l) ∈ Cn, if l ∈
Mk,n ⊆ A∼0 \{k}. Finally, CA k ∈A∼0 acquires a measurement
yk,0;n of its distance to the target, i.e., 0∈Mk,n, if k ∈ Tn ⊆A∼0;
thus, Tn , {k ∈ A∼0 |0 ∈ Mk,n}. An example of communication
and measurement topologies is given in Fig. 1. We consider a 2D
scenario; the extension to the 3D case is straightforward.

The distance measurements are modeled as

yk,l;n = ‖x̃k,n− x̃l,n‖ + vk,l;n , (1)

where x̃k,n, [x1,k,n x2,k,n]
T represents the location of agent k∈A

(note that this a part of the state xk,n). The measurement noise vk,l;n

cooperative agent
target
communication link
measurement link

Fig. 1. Example of an agent network with a target.
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is assumed Gaussian with a known variance σ2
v; we also assume that

vk,l;n and vk′,l′;n′ are independent unless (k, l, n) = (k′, l′, n′).

3. REVIEW OF CoSLAT

In CoSLAT [17], at time n, each CA k ∈ A∼0 estimates both its
own state xk,n and the target state x0,n, using the measurements of
the inter-CA distances and CA-target distances up to time n, i.e.,
Y1:n , {yk,l;n′}

k∈A∼0, l∈Mk,n′ , n′∈{1,...,n}
. The minimum mean

square error (MMSE) estimator [20] of state xk,n, k∈A is given by

x̂
MMSE
k,n , E{xk,n|Y1:n} =

∫

xk,nf(xk,n|Y1:n)dxk,n .

Here, the posterior pdf f(xk,n|Y1:n) needs to be computed from
the joint posterior of the state set X0:n , {xk,n′}

k∈A, n′∈{0,...,n}
,

f(X0:n|Y1:n), by marginalization.

3.1. Belief Propagation Message Passing

Using common assumptions [2], the joint posterior f(X0:n|Y1:n)
factorizes according to [17, Equation 3], which corresponds to
the factor graph [21] shown in Fig. 2. An efficient approximate
marginalization of f(X0:n|Y1:n) can be achieved by applying
a belief propagation [21] message passing scheme to this factor
graph [17]. At each time n, P message passing iterations are per-
formed. The approximate marginal posterior (AMP) of agent node
k∈A at message passing iteration p∈{1, . . . , P} is given by

b
(p)
k,n(xk,n) ∝















m→n(xk,n)
∏

l∈Mk,n

m
(p)
l→k(xk,n) , k∈A∼0

m→n(x0,n)
∏

l∈Tn

m
(p)
l→0(x0,n) , k=0 ,

(2)

where the “prediction message” m→n(xk,n) is calculated from the
state transition pdf and the final iterated AMP at time n−1 as

m→n(xk,n) =

∫

f(xk,n|xk,n−1) b
(P )
k,n−1(xk,n−1) dxk,n−1 , (3)

and the “measurement messages” m
(p)
l→k(xk,n) are calculated as

m
(p)
l→k(xk,n) =



















∫

f(yk,l;n|xk,n ,xl,n) b
(p−1)
l,n (xl,n) dxl,n ,

k∈A∼0
∫

f(yl,0;n|x0,n ,xl,n) b
(p−1)
l,n (xl,n) dxl,n ,

k=0 .
(4)

As discussed in [17], this message passing scheme uses an approx-
imation that avoids the costly calculation of extrinsic information.
Numerical analysis showed that this approximation leads to slightly
overconfident AMPs but does not degrade the estimation perfor-
mance. Due to the measurement model in (1), m(p)

l→k(xk,n) depends
only on the AMP of the location of agent l, b(p−1)

l,n (x̃l,n), and is itself
only a function of the location of agent k, x̃k,n. Hence, hereafter we
will write m

(p)
l→k(x̃k,n) instead of m(p)

l→k(xk,n). Messages are sent
only forward in time, and iterative message passing is performed at
each time step individually [2]. Therefore, m→n(xk,n) in (3) re-
mains unchanged during the message passing iterations. Note that
the message passing scheme (2)–(4) transfers probabilistic informa-
tion between the CSL and DTT parts of the algorithm.

Direct calculation of (2)–(4) is still infeasible in general. An ap-
proximate NBP implementation [4,18] was considered in [17]. This
typically requires the transmission of several hundreds of particles
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b
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1
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(p−1)
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(p−1)
K

m
(p)
K→1

m
(p)
2→1

m→n

m→n
x0 x0

f0 f0

f1,0 f1,0

m
(p)
1→0

b
(p−1)
1

m
(p)
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b
(p−1)
0

m
(p)
0→1

b
(P )
0

Fig. 2. A CoSLAT factor graph, shown for times n−1 and n. The
top (red) dotted box corresponds to the DTT part (target k=0); the
bottom (black) dotted box corresponds to the CSL part for CA k=1.
Also shown are the messages and approximate marginal posteriors
(AMPs) involved in calculating b0,n(x0,n) and b1,n(x1,n). All time
indices are omitted for simplicity, and the following short notation
is used: fk , f(xk,n′ |xk,n′−1) and fk,l , f(yk,l;n′ |xk,n′ ,xl,n′),
for n′ ∈ {1, 2, . . . }. Edges with filled arrowheads depict messages
or AMPs that are represented by particles; edges with non-filled ar-
rowheads depict parametric measurement messages or AMPs.

between communicating CAs. Furthermore, NBP has a high compu-
tational complexity. This is mainly due to the message multiplication
in (2), whose complexity scales as O(MJ2), where J is the number
of particles and M is the number of messages multiplied [18].

3.2. Distributed Implementation of CoSLAT

A distributed implementation of the NBP message passing scheme
for CoSLAT is complicated by the fact that the product of measure-
ment messages

∏

l∈Tn
m

(p)
l→0(x̃0,n) in (2) is not available at the CAs.

In [17], this problem is solved by using the likelihood consensus
scheme [8]. More specifically, at each CA l ∈ Tn, the logarithm of
m

(p)
l→0(x̃0,n) is approximated by a finite-order basis expansion:

log m
(p)
l→0(x̃0,n) ≈

R
∑

r=1

β
(p)
l;n,r(yl,0;n)ϕr(x̃0,n) . (5)

Here, the “basis functions” ϕr(x̃0,n) do not depend on the specific
CA l. The expansion coefficients β(p)

l;n,r(yl,0;n), r ∈ {1, . . . , R} can
be calculated locally at CA l by least squares fitting [22] using the
location part of the particles representing m→n(xl,n) as reference
points (cf. [8]). Furthermore, we formally set β(p)

l;n,r(yl,0;n) = 0 for
all r ∈ {1, . . . , R} if l /∈Tn. The approximations (5) then entail the
following approximation of the desired message product [17]:

∏

l∈Tn

m
(p)
l→0(x̃0,n) ≈ exp

(

R
∑

r=1

B(p)
n,r ϕr(x̃0,n)

)

,

with

B(p)
n,r =

∑

l∈Tn

β
(p)
l;n,r(yl,0;n) =

∑

l∈A∼0

β
(p)
l;n,r(yl,0;n) . (6)

The coefficients B(p)
n,r in (6) can be obtained at each CA by running

R parallel instances of an average consensus algorithm or a gossip
algorithm [23, 24] in the agent network. This requires only local
communications between neighboring CAs.
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4. REDUCING COMPLEXITY AND COMMUNICATIONS

In the novel CoSLAT algorithm, a parametric representation of all
AMPs is used. In this way, only the AMP parameters have to be
transmitted between neighboring CAs (localization partners). The
CAs then calculate parametric representations of the measurement
messages. Using the importance sampling principle, the message
multiplication in (2) can thus be done by evaluating the product of all
available measurement messages at the predicted particles. Because
of the parametric representations, kernel representations (as in [17])
are not needed; thereby, the complexity is reduced from O(MJ2) to
O(MJ) and the communication cost by an order of magnitude.

The measurement messages are represented using the annular
parametric distributions introduced in [18]. However, whereas [18]
employed sampling from the measurement messages and an opti-
mization step, we determine the parameters directly from the AMP
parameters of the localization partners and from the agent location
estimate at the previous message passing iteration. Involving the
previous agent location estimate also allows a more accurate deter-
mination of the width parameters of the measurement messages.

In the following, we present a more detailed description of the
proposed CoSLAT algorithm.

4.1. Step 1: Extracting the AMP Parameters

Consider b
(p−1)
l,n (x̃l,n), i.e., the AMP of the location x̃l,n of CA

l ∈ A∼0 at message passing iteration p−1. This 2D function is
either unimodal if the CA is well localized; bimodal with two modes
if the CA is localized with ambiguity; or multimodal (e.g., annularly
shaped) if the CA is poorly localized [2]. To reduce communica-
tions, we approximate b

(p−1)
l,n (x̃l,n) by a Gaussian N (µ̃l,n, C̃l,n) if

it is unimodal and by a mixture of two Gaussians N
(

µ̃
(1)
l,n, C̃

(1)
l,n

)

and
N
(

µ̃
(2)
l,n, C̃

(2)
l,n

)

with equal weights if it is bimodal. The means and
covariances are then transmitted to the localization partners, which
requires the transmission of 2+3 = 5 real numbers in the unimodal
case and of 10 real numbers in the bimodal case. If b(p−1)

l,n (x̃l,n) is
multimodal, no AMP parameters are transmitted, because a poorly
localized CA cannot provide useful information to its partners.

We propose the following procedure for extracting the AMP pa-
rameters at CA l. First, CA l derives particles

{

x̃
(j)
l,n

}J

j=1
repre-

senting b
(p−1)
l,n (x̃l,n) from the particles representing b

(p−1)
l,n (xl,n) by

discarding the irrelevant entries in each particle vector (recall that
x̃l,n is a subvector of xl,n). Next, CA l uses a clustering algorithm
such as K-means [25] to partition

{

x̃
(j)
l,n

}J

j=1
into two disjoint sub-

sets
{

x̃
(j)
l,n

}

j∈J1

and
{

x̃
(j)
l,n

}

j∈J2

, and it calculates the Fisher linear

discriminant [25] (denoted D) for that partition. Also, a mean and a
covariance matrix are computed for each particle subset, i.e.,

µ̃
(i)
l,n =

1

|Ji|

∑

j∈Ji

x̃
(j)
l,n , C̃

(i)
l,n =

1

|Ji|

∑

j∈Ji

x̃
(j)
l,nx̃

(j)T
l,n − µ̃

(i)
l,nµ̃

(i)T
l,n ,

for i ∈ {1, 2}. If D is above a threshold T and ‖µ̃(1)
l,n−µ̃

(2)
l,n‖ > 4σv ,

the clustering result is accepted and, thus, the bimodal Gaussian mix-
ture model is adopted for b(p−1)

l,n (x̃l,n). Otherwise, the clustering is

rejected and a single mean µ̃l,n and covariance matrix C̃l,n are de-
termined from the total particle set

{

x̃
(j)
l,n

}J

j=1
. Then, if (C̃l,n)1,1+

(C̃l,n)2,2 < 10σ2
v , the unimodal Gaussian model N (µ̃l,n, C̃l,n) is

adopted, otherwise b(p−1)
l,n (x̃l,n) is considered multimodal. For l=0

(the target), CA k calculates b
(p−1)
0,n (x0,n) via the likelihood con-

sensus scheme described in Section 3.2 and extracts corresponding
parameters µ̃0,n, C̃0,n based on the unimodal Gaussian model.

4.2. Step 2: Calculating the Parametric Measurement Messages

After all AMP parameters have been transmitted, each CA k∈A∼0

knows (approximate representations of) the AMPs b
(p−1)
l,n (x̃l,n) of

its localization partners l ∈ Mk,n. CA k next calculates a particle
representation of its own AMP b

(p)
k,n(xk,n) by implementing (2)–(4)

as described in Section 4.3. Because this requires closed-form ex-
pressions of the measurement messages m(p)

l→k(x̃k,n), l∈Mk,n, we
use the parametric message representations introduced in [18]. More
specifically, if b(p−1)

l,n (x̃l,n) is unimodal, we set

m
(p)
l→k(x̃k,n) ∝ exp

(

−

(

yl,k;n− ‖x̃k,n− µ̃l,n‖
)2

2rl,k;n

)

. (7)

This is an annulus about µ̃l,n with nominal radius yl,k;n; the ra-
dial width about the nominal radius is determined by rl,k;n. If
b
(p−1)
l,n (x̃l,n) is bimodal, we set m(p)

l→k(x̃k,n) equal to the sum of

two annuli that are located about µ̃
(1)
l,n and µ̃

(2)
l,n and have equal

nominal radius yl,k;n and possibly different width parameters r(1)l,k;n

and r
(2)
l,k;n. Finally, if b

(p−1)
l,n (x̃l,n) is multimodal, CA k ignores

localization partner l by setting m
(p)
l→k(x̃k,n) to a constant value.

It remains to determine the width parameter(s). Let us first con-
sider the unimodal representation (7). If agent l is an anchor CA,
we have b

(p−1)
l,n (x̃l,n) = δ(x̃l,n− µ̃l,n), and the message (7) with

rl,k;n = σ2
v is exactly equal to (4). Otherwise, let ρk,l;n(x̃l,n) ,

∥

∥ˆ̃x
(p−1)
k,n − x̃l,n

∥

∥ be the distance of the estimate of x̃k,n at message
passing iteration p−1, denoted ˆ̃x

(p−1)
k,n , from x̃l,n. A good approxi-

mation of (4) is then obtained by choosing

rl,k;n = h
T
k,l;nC̃l,nhk,l;n + σ2

v , (8)

where hk,l;n is the gradient of ρk,l;n(x̃l,n) evaluated at µ̃l,n [7].
This result for rl,k;n is obtained via a linear approximation of the “re-
duced” measurement equation y′

k,l;n = ρk,l;n(x̃l,n)+ vk,l;n around
µ̃l,n [7]. More specifically, rl,k;n is the variance of ρk,l;n(µ̃l,n) +
h

T
k,l;n(x̃l,n − µ̃l,n) + vk,l;n. Note that now the radial width of the

annular message m(p)
l→k(x̃k,n) in (7) is influenced by both the uncer-

tainty in the lth CA location, expressed by h
T
k,l;nC̃l,nhk,l;n, and the

measurement variance σ2
v .

For the bimodal representation, we choose the two width param-
eters as in (8), i.e., r(i)l,k;n = h

(i)T
k,l;nC̃

(i)
l,nh

(i)
k,l;n + σ2

v for i ∈ {1, 2},
where h

(i)
k,l;n is the gradient of ρk,l;n(x̃l,n) evaluated at µ̃(i)

l,n.

4.3. Step 3: Updating the AMPs

With all messages m
(p)
l→k(x̃k,n), l∈Mk,n determined, an approxi-

mation of the functional form of
∏

l∈Mk,n
m

(p)
l→k(x̃k,n) is available

at CA k∈A∼0. Thus, CA k is able to calculate a particle repre-
sentation of its updated AMP b

(p)
k,n(xk,n) according to (2). This

is done by means of importance sampling [26], using the predic-
tion message m→n(xk,n) as proposal density: particles

{

x
(j)
k,n

}J

j=1

are drawn from m→n(xk,n), and associated weights are obtained as
w

(j)
k,n =

∏

l∈Mk,n
m

(p)
l→k(x̃

(j)
k,n). This is followed by a resampling

step [26] to obtain equally weighted particles.

Comments: The complexity of the overall algorithm scales as
O(MJ). If the prior of CA k (at time n=0) is uniform, very non-
informative, or difficult to sample from, it may be preferable to use
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Fig. 3. Network topology used for the simulations, with example
realizations of the target and CA trajectories. Initial mobile CA lo-
cations are indicated by crosses, anchor locations by circles, and the
initial target location by a star. The big dashed circles indicate the
measurement regions of the CAs initially located near the corners.

one of the measurement messages m
(p)
l→k(x̃k,1) as proposal density

at timen=1. The drawing of particles fromm→n(xk,n) in (3) using
particles representing b

(P )
k,n−1(xk,n−1) and the drawing of particles

from m
(p)
l→k(x̃k,n) in (4) using particles representing b

(p−1)
l,n (xl,n)

are described in [18].

5. SIMULATION RESULTS

We consider a network of K=12 CAs and one target as depicted in
Fig. 3. Eight CAs are mobile and four CAs are anchors (i.e., static
CAs with perfect location information modeled via Dirac-shaped
priors). Each CA moves within a field of size 75×75, has a com-
munication range of 50, and attempts to localize itself and the target.
The measurement regions of the four CAs initially located near the
corners are indicated in Fig. 3 by dashed circles. The measurement
regions of the other eight CAs cover the entire field.

The states of the mobile CAs and of the target consist of lo-
cation and velocity, i.e., xk,n = [x1,k,n x2,k,n ẋ1,k,n ẋ2,k,n]

T.
Each mobile CA starts moving only when it is sufficiently local-
ized in the sense that the trace of its location covariance matrix
is below 5σ2

v . The CA then attempts to reach the center of the
scene, x̃c = [37.5 37.5]T, in 75 time steps; therefore, the mobile
CA trajectories are generated using a Dirac-shaped prior located
at µk,0 = [x1,k,0 x2,k,0 (x̃1,c − x1,k,0)/75 (x̃2,c − x2,k,0)/75]

T,
where x1,k,0 and x2,k,0 are chosen as shown in Fig. 3. How-
ever, for our simulations of the algorithms, we assumed a location
prior that is uniform on [−500, 500]× [−500, 500] and—after the
CA is sufficiently localized—a Gaussian velocity prior with mean
[(x̃1,c − ˆ̃x1,k,n′)/75 (x̃2,c − ˆ̃x2,k,n′)/75]T and covariance matrix
diag{0.001, 0.001}. Here, ˆ̃xk,n′ is the location estimate at the time
n′ at which the kth CA is sufficiently localized for the first time. The
prior of the target state is Gaussian with mean µ0,0 = [0 5 0.4 0.4]T

and covariance matrix C0,0 = diag{1, 1, 0.001, 0.001}. The
mobile CAs and the target evolve independently according to
xk,n = Gxk,n−1 + Wuk,n, n = 1, 2, . . . [19], where the ma-
trices G∈R

4×4 and W∈R
4×2 are chosen as in [8] and the driving

noise vectors uk,n ∈ R
2 are Gaussian, i.e., uk,n ∼ N (0, σ2

uI),
with variance σ2

u = 0.00005 for the mobile CAs and σ2
u = 0.001

for the target; furthermore, uk,n and uk′,n′ are independent unless
(k, n) = (k′, n′). The observation noise variance is σ2

v = 2. We
performed 100 simulation runs.

We compare the performance of the proposed CoSLAT algorithm
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Fig. 4. Average root-mean-square errors (RMSE) of self-localization
and target localization versus time n.

with that of the original CoSLAT algorithm in [17]. In addition, we
consider a second reference method that separately performs CSL by
means of NBP as described in [18] and DTT by means of the likeli-
hood consensus-based distributed particle filter presented in [8]; the
latter uses the CA location estimates provided by CSL. In all three
methods, the likelihood consensus scheme uses an average consen-
sus [23] with six iterations, and the basis expansion is a third-order
polynomial approximation [8], resulting in an expansion order of
R = 16. The NBP scheme performs P = 3 message passing itera-
tions. The number of particles used by both NBP and the distributed
particle filter is J = 500. The threshold in the proposed algorithm
is T =40; this value was observed to lead to a reliable clustering of
particles for a bimodal AMP.

Fig. 4 shows the simulated root-mean-square self-localization and
target localization errors for n = 1, . . . , 75. These errors were deter-
mined by averaging over all CAs and all simulation runs. It is seen
that the proposed algorithm performs equally well as the algorithm
of [17], both with respect to self-localization and target tracking;
thus, the substantial savings in complexity and communication are
not offset by a performance loss. Furthermore, the self-localization
error of both CoSLAT algorithms is seen to be significantly smaller
than that of the second reference method. This is because with pure
CSL, the lower-left and upper-right CAs do not have enough partners
for accurate self-localization, whereas with CoSLAT, these CAs can
use their measured distance to the target to calculate the message
from the target node, m(p)

0→k(x̃k,n), which is exploited for improved
self-localization. Additionally, also the target tracking error of both
CoSLAT algorithms is significantly smaller than that of the second
reference method for almost all times. This is because with sepa-
rate CSL and DTT, the poor self-localization of the lower-left and
upper-right CAs results in a degraded target tracking performance.

6. CONCLUSION

We have proposed a novel hybrid parametric/nonparametric mes-
sage passing algorithm for cooperative simultaneous localization and
tracking (CoSLAT). This algorithm uses parametric representations
of the measurement messages and of the inter-agent messages in-
volved in the approximate marginal posteriors (AMPs). The pa-
rameters of the measurement messages are determined directly from
the AMP parameters of the localization partners and from the iter-
ated location estimate. Compared to the original CoSLAT method,
the proposed algorithm achieves an order-of-magnitude reduction of
communications (in a two-dimensional setting) and a substantial re-
duction of computational complexity, without a loss in performance.
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