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ABSTRACT

In this paper, we propose a decentralized algorithm for the estimation

and control of connectivity of random ad hoc networks. First, we

introduce a novel stochastic power iteration method that allows each

node to estimate and track the expected algebraic connectivity of a

random graph. The proposed method is then used to adapt the power

transmitted by each node in order to drive the network connectivity

toward a desired value. Numerical results illustrate the main features

of the algorithm and its robustness to fluctuations of the network

graph due to the presence of random link failures.

Index Terms— Random graph, stochastic power iteration

method, topology control.

1. INTRODUCTION AND RELATED WORK

Ad hoc networks are composed of a collective of nodes that can

exchange data among each other through wireless links, and where

each node has a processing unit to perform local computations.

Usually, the topology of this kind of networks is created in an ad

hoc way, e.g., based on a nearest neighbor criterion to allow for low-

power communication. It is widely recognized that the performance

of many distributed algorithms, which operate over wireless ad-hoc

networks, highly depends on the network topology [1]-[2]-[3]. For

example, highly connected networks generally have significantly

faster convergence thanks to a more efficient in-network informa-

tion diffusion.

Spectral graph theory [4] has been demonstrated to be a very

powerful tool for topology inference. The eigenvalues and/or eigen-

vectors of the Laplacian matrix of the graph have been exploited,

e.g., to estimate the connectivity of the network [5]-[10], to find

densely connected clusters of nodes [11]-[12], and to search for

potential links that would greatly improve the connectivity if they

would be established [13]. In all these previous works, it was ar-

gued and demonstrated that the most useful eigenvector for graph

partitioning is the one corresponding to the second-smallest eigen-

value of the Laplacian matrix. This eigenvalue is referred to as the

algebraic connectivity and its eigenvector is often referred to as the

Fiedler vector [5]. It is then of interest to find novel and efficient

algorithms for the computation of these connectivity parameters.

The problem of distributed estimation of the eigenvalues of the

Laplacian matrix has been considered in several previous works,

e.g., [6]-[10]. In [6] a distributed algorithm is proposed to find the n
eigenvectors corresponding to the n largest eigenvalues of the Lapla-

cian matrix or the (weighted) adjacency matrix, based on power it-

eration and random walk techniques. The work in [7] evaluates the

eigenstructure of the Laplacian matrix by letting the nodes oscillate
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at the eigenfrequencies corresponding to the network topology. An

efficient and distributed algorithm that computes the Fiedler vector

and the algebraic connectivity, with application to topology infer-

ence in ad hoc networks, has been also proposed in [8]. In [9],

the authors propose a distributed algorithm that allows each node

to estimate and track the algebraic connectivity of the graph in mo-

bile wireless sensor networks. Then, based on this estimator, a de-

centralized gradient controller for each agent helps maintain global

connectivity during motion. Finally, reference [10] proposes a dis-

tributed algorithm to estimate the algebraic connectivity of a graph,

thus applying this method to an event-triggered consensus scenario,

where the most recent estimate of the algebraic connectivity is used

for adapting the behavior of the average consensus algorithm.

All these previous works assumed ideal communications among

the network nodes. However, in a realistic scenario, the wireless

channel is affected by random fading and additive noise, which in-

duce errors in the received packets. In such a case, the receiving

node could request the retransmission of the erroneous packets, but

this would imply random delays in the communication among the

nodes and it would be complicated to implement over a totally de-

centralized system. It is then of interest to analyze networks where

the erroneous packets are simply dropped, without requiring a re-

transmission. The effect of random graphs on distributed algorithms

has been thoroughly studied in a series of works, mainly focused

on the convergence of consensus algorithms, e.g., [18]-[20]. In this

work, we propose a distributed algorithm, which we refer to as the

stochastic power iteration algorithm, whose aim is to estimate the

algebraic connectivity of the expected Laplacian matrix of a random

graph, while assuming random impairments in the exchange of data

among neighbor nodes. The proposed method is then used to con-

trol the expected connectivity of the network by adapting the power

transmitted by each node, in order to drive the network connectivity

toward a desired value.

2. NETWORK MODEL

We consider a network composed of N nodes interacting according

to a communication topology. The interaction among the nodes is

modeled as an undirected graph G = (V,E), where V = 1, 2, ..., N
denotes the set of nodes and E ⊆ V × V is the edge set. The struc-

ture of the graph is described by a symmetric N × N adjacency

matrix A := {aij}, whose entries aij are either positive or zero,

depending on wether there is a link between nodes i and j or not,

i.e., if the distance between nodes i and j is less than a coverage

radius, which is dictated by nodes’ transmit power and the channel

between them. The set of neighbors of a node i is Ni, defined as

Ni = {j ∈ V : aij > 0}. Node i communicates with node j if

j is a neighbor of i (or aij > 0). Denoting by dii =
∑M

j=1
aij
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the degree of node i, the degree matrix D is a diagonal matrix with

entries dii that are the row sums of the adjacency matrix A. The

graph Laplacian L is defined as L = D −A. The spectral proper-

ties of L have been shown to be critical in many multiagent appli-

cations, such as formation control [14], consensus seeking [15] and

direction alignment [17]. We denote by λi(L), i = 1, . . . ,M , the

eigenvalues of L, ordered in increasing sense. The N × N matrix

L always has, by construction, a null eigenvalue λ1(L) = 0, with

associated eigenvector 1N composed of all ones. For a connected

graph, the nullspace of L has dimension 1 and it is spanned by the

vector 1. The quantity λ2(L) is known as the algebraic connectivity

of the graph. This eigenvalue is greater than 0 if and only if G is

a connected graph. The magnitude of this value reflects how well

connected the overall graph is, and has been used in analysing the

robustness and synchronizability of networks [14]-[17].

Random link failures : In a realistic communication scenario, the

packets exchanged among network nodes may be received with er-

rors, because of collisions, channel fading or noise. The retransmis-

sion of erroneous packets can be incorporated into the system, but

packet retransmission introduces a nontrivial additional complexity

in decentralized implementations and, more importantly, it also in-

troduces an unknown delay and delay jitter. It is then of interest

to examine simple protocols where erroneous packets are simply

dropped. We take into account random packet dropping by modeling

the coefficient aij describing the network topology as statistically in-

dependent random variables. Then, the Laplacian of the graph varies

with time as a sequence of i.i.d. matrices {L[k]}, which can be writ-

ten, without any loss of generality, as

L[k] = L̄+ L̃[k] (1)

where L̄ denotes the mean matrix and L̃[k] are i.i.d. perturbations

around the mean. We do not make any assumptions about the link

failure model. Although the link failures and the Laplacians are in-

dependent over time, during the same iteration, the link failures can

still be spatially correlated. It is important to remark that we do not

require the random instantiations G[k] of the graph be connected for

all k. We only require the graph to be connected on average. This

condition is captured by requiring λ2(L̄) > 0.

3. DECENTRALIZED ESTIMATION OF EXPECTED

CONNECTIVITY

In this section, we propose a novel algorithm aimed at estimating the

connectivity of a random graph G by computing the second eigen-

value of the expected Laplacian matrix L̄. Since in our setting, the

network graph is random due to the presence of link failures, in the

following, we introduce a stochastic power iteration method that is

able to handle the randomness introduced by the graph fluctuation.

Let us consider the matrix W [k] given at time k by:

W [k] = I − εL[k] = W̄ + W̃ [k] (2)

where W̄ = I − εL̄ is the mean matrix, W̃ [k] = −εL̃[k] are i.i.d.

fluctuations around the mean, and 0 < ε < 2/λN (L). The matrix

W [k] in (2) was already used as the iteration matrix of consensus

algorithms over random graphs, see e.g. [19]-[20]. The eigenvalues

of the expected Laplacian matrix L̄ are directly related to those of

the expected consensus matrix W̄ in (2) through the relation

λi(L̄) = (1− λN+1−i(W̄ ))/ε (3)

and, in particular, the expected algebraic connectivity is given by

λ2(L̄) = (1 − λN−1(W̄ ))/ε. We consider the following assump-

tion on the stochastic matrices describing the network graph:

Assumption A.1 : Every instance of the random matrix W [k] in (2)

is doubly stochastic, i.e.,

1
T
W [k] = 1

T , and W [k]1 = 1, for all k. (4)

Under Assumption A.1, the eigenvector vN [k] associated to the

largest eigenvalue of the matrix W [k] is equal to 1/
√
N , for all k.

Exploiting Assumption A.1, we deflate the original matrix W [k] at

time k, obtaining the matrix B[k] given by:

B[k] = W [k]− vN [k]vN [k]T = W [k]− 1

N
11

T

= W̄ − 1

N
11

T + W̃ [k] = B̄ + B̃[k] (5)

where B̄ = W̄ − 1

N
11

T
and B̃[k] = W̃ [k] = −εL̃[k]. In this

way, the maximum eigenvalue of the deflated matrix B̄ coincides

with the second largest eigenvalue of W̄ .

The main steps of the algorithm are listed in the following.

Stochastic power iteration method

Initialize x[0], y[0], and z[0] randomly. Then, perform the following

steps for k ≥ 0:

1. Build the deflated matrix B[k] = W [k]− 1

N
11

T
;

2. Evaluate the estimate y[k+1] of λN−1(W̄ ) at time k+1 as:

ȳ[k] =
x

T [k]B[k]x[k]

xT [k]x[k]
(6)

y[k + 1] = y[k] + α[k] (ȳ[k]− y[k]) (7)

where α[k] is an iteration dependent step-size satisfying (10);

3. Perform the following power iteration

x[k + 1] =
B[k]x[k]

‖B[k]x[k]‖ ; (8)

4. Compute the estimate z[k + 1] of λ2(L̄) at time k as:

z[k + 1] = (1− y[k + 1])/ε; (9)

5. Go to step 1 and repeat until convergence.

The stochastic power iteration method in (6)-(8) computes an esti-

mate for the largest eigenvalue of the expected matrix B̄, which is di-

rectly related to the second eigenvalue λ2(L̄) of the expected Lapla-

cian through (9). To obtain convergence of the stochastic power it-

eration method, we also consider the following assumption:

Assumption A.2 : (Persistence) The step-size sequence α[k] in (7)

satisfies the conditions:

α[k] > 0,
∞
∑

k=0

α[k] = ∞,
∞
∑

k=0

α2[k] < ∞. (10)

Conditions (10) are standard in stochastic approximation and adap-

tive signal processing [21]-[22]; the effect of the step-size in (10)
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is to drive to zero the variance of the additive disturbance due to

the presence of link failures. Then, the convergence of the iterative

procedure is determined only by the expected graph of the network.

We are now able to state the main theorem on the convergence of the

stochastic power iteration method.

Theorem : Let z[k] the sequence generated in (9) by the stochastic

power iteration algorithm. If λ2(L̄) > 0, under Assumptions A.1

and A.2, we have

lim
k→∞

z[k] = λ2(L̄), almost surely (w.p.1). (11)

Proof. The proof is omitted due to lack of space. A detailed conver-

gence analysis can be found in [23].

Decentralized implementation : The stochastic power iteration

method has been described up to now in a centralized fashion. In

the following, we propose a method based on average consensus

[15]-[16] to decentralize the computation. The two operations that

the nodes have to parallelize are (6) and (8), whereas all the other

computations can be done locally. Let b[k] = B[k]x[k]. The i-
th component of the vector b[k] can be evaluated locally. Indeed,

exploiting the structure of the deflated matrix in (5), we have

bi[k] = xi[k] + ε

N
∑

j=1

aij [k](xj [k]− xi[k])−m[k] (12)

where m[k] =
1

N
1
T
x[k] is a global parameter. Indeed, the value

m[k] is given by the average of the values xi[k] stored locally at

each node, which can be computed in a decentralized fashion using

an average consensus step [15]-[16].

The next step is to evaluate in a distributed fashion the ratio in

(6). In particular, we notice that expression (6) can be rewritten as

x
T [k]B[k]x[k]

xT [k]x[k]
=

1

N

∑N

i=1
xi[k]bi[k]

1

N

∑N

i=1
x2
i [k]

, (13)

where both numerator and denominator are written as inner products.

This notation is convenient because it enables us to compute these

expressions through a weighted average consensus step [15]-[16],

which evaluates in a distributed manner the ratio in (13). Thus, at

this stage, each node is able to compute (6) and (7) locally.

To complete the series of operations of the stochastic power iter-

ation algorithm, we need still to evaluate (8) in a distributed fashion.

Expression (8) can be locally evaluated by node i, ∀i, as:

xi[k + 1] =
bi[k]

‖b[k]‖ . (14)

Since the numerator has been already computed through (12), we

need only to compute the denominator of (14). In particular, we

consider the evaluation of ‖b[k]‖N =
√

∑N

i=1
b2i [k]/N , which is a

scaled version of ‖b[k]‖, and can be computed in a distributed fash-

ion by taking the square root of the output of an average consensus

step [15]-[16]. Each node then computes x̂i[k + 1] =
bi[k]

‖b[k]‖
N

=
√
Nxi[k], which is a scaled version of the true value xi[k] that the

algorithm should compute in (14). However, even in the presence of

such update, the method still works correctly because, at time k+1,

the step in (6) is a Rayleigh ratio, whose result is not affected by the

scaling
√
N , thus leading to the correct update of the algorithm.
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Fig. 1: Estimate of λ2(L̄) versus iteration index.

Numerical example - Estimation of λ2(L̄) : The aim of this example

is to test the estimation capabilities of the stochastic power iteration

method. We consider a connected network composed of 20 nodes,

where the communication among nodes is impaired by random link

failures so that each link is on with a probability pc, i.e., the probabil-

ity that a packet is exchanged correctly over a communication link.

In Fig. 1, we report the behavior of the estimate of λ2(L̄) in (9)

versus the iteration index, considering different values of the proba-

bility pc. The ideal case, which corresponds to a probability pc = 1,

is reported as a benchmark. The theoretical values of λ2(L̄) are also

reported as dashed lines. The step-size sequence is chosen so that

α[k] = α0/(k
τ ), where α0 = 1 and τ = 0.55, in order to satisfy

(10). As we can notice from Fig. 1, the algorithm converges to the

theoretical values of λ2(L̄) of the corresponding expected graph. As

expected, reducing the probability to establish a link, the algorithm

needs more time to reach the final convergence value.

4. CONTROL OF EXPECTED CONNECTIVITY

The estimation of λ2(L̄) carried out by the stochastic power iteration

method can be used to adapt the power transmitted by each node,

in order to drive the network connectivity toward a desired value.

This can be obtained through a power control step, where each node

update its transmission power as

pi[k + 1] = pi[k] + β (λ∗ − z[k + 1]) (15)

for k ≥ 0, where λ∗ is a positive constant used to enforce a desired

connectivity value, β is a positive step-size, and z[k + 1] is the es-

timate of λ2(L̄), at time k + 1, carried out by the stochastic power

iteration method in (9). Then, at each time k+1, the covering radius

of each node is updated according to

ri[k + 1] =
γ

√

pi[k + 1]

Pth

(16)

where γ is the path-loss exponent, which can assume values from 2

to 6 according to the considered propagation environment, and Pth is

the minimum received power needed to establish a communication

link among two nodes. The updates in (15)-(16) can be inserted

as fifth and sixth steps of the stochastic power method in (6)-(9),
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Fig. 2: (Top) Behavior of λ2(L̄) versus iteration index. (Bottom)

Temporal behavior of the sum of powers transmitted by nodes.

thus leading to a dynamic change of the network topology toward a

desired connectivity value.

Numerical example - Control of the expected connectivity : In this

example we combine the stochastic power iteration step in (6)-(9)

with the power control step in (15)-(16), thus illustrating the capa-

bility of the resulting strategy to control the expected connectivity

of the network graph. As a starting point, we consider a network

composed of 50 nodes deployed over a geographic area of 2500 m2

according to the topology (1) shown in Fig. 3. The initial power

transmitted by each node is pi[0] = 1 Watt, whereas the threshold

power needed to establish a communication link among two nodes

is Pth = 0.01 Watt. We assume a free-space path loss as a propa-

gation environment, i.e. γ = 2. The network topology (1) in Fig.

3 has a value of algebraic connectivity λ2(L) = 0.105. Our goal

is to use the proposed algorithm to drive the expected connectivity

of the graph (1) in Fig. 3 toward a desired value λ∗ equal to 0.15,

considering two different values of probability to establish a link,

e.g., pc = 1, and pc = 0.5. In the top part of Fig. 2, we report the

behavior of the estimate of λ2(L̄) in (9) versus the iteration index,

whereas, in the bottom part, we illustrate the temporal behavior of

the sum of the powers transmitted by the network nodes. The con-

tinuous curves illustrate the case pc = 1, whereas the dashed curves

the case pc = 0.5. The step size α[k] has been chosen as before,

and β = 0.1. As we can notice from Fig. 2 (top), the value of

the expected algebraic connectivity of the graph converges close to

the desired value λ∗ for both values of pc. The correspondent net-

work topologies are shown in Fig. 3, (2) and (3), respectively for

pc = 1 and pc = 0.5. As we can notice from Fig. 3, (2) and (3),

the network graph obtained in the case of a lower probability pc is

much more connected. This happens because, reducing the prob-

ability to establish a communication link with respect to the ideal

case, the algorithm will increase the number of links of the resulting

network in order to reach the target value of expected connectivity.

Consequently, each node will transmit more power to enlarge its own

subset of neighbors. This behavior can be noticed from Fig. 2 (bot-

tom), where we can see how the sum of the powers transmitted by
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Fig. 3: Examples of network graphs.

the network nodes converge to a fixed value, which depends on the

probability to establish a communication link.

5. CONCLUSIONS

In this paper we have proposed a decentralized stochastic power iter-

ation algorithm aimed at estimating the algebraic connectivity of an

ad hoc network in case the communications among secondary users

are affected by random link failures. The algorithm converges almost

surely to the second smaller eigenvalue of the expected Laplacian of

the graph. The estimation is then robust against the graph random-

ness, whose effect is only to slow down the convergence process.

Finally, the proposed method is coupled with a power control mech-

anism that drives the network connectivity toward a desired value.

Numerical simulations show the main features of the algorithm in

the presence of random link failures.
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