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ABSTRACT
Wideband spectrum sensing provides a means to determine
the occupancy of channels spanning a broad range of frequen-
cies. Practical limitations impose that the acquisition should
be accomplished at a low rate, much below the Nyquist lower
bound. Dramatic rate reductions can be obtained by the ob-
servation that only a few parameters need to be estimated in
typical spectrum sensing applications. This paper discusses
the joint estimation of the power of a number of channels,
whose power spectral density (PSD) is known up to a scale
factor, using compressive measurements. First, relying on
a Gaussian assumption, an efficient approximate maximum
likelihood (ML) technique is presented. Next, a least-squares
estimator is applied for the general non-Gaussian case.

Index Terms— Analog-to-Information Conversion, Spec-
trum Sensing, Maximum Likelihood Estimation.

1. INTRODUCTION

Spectrum sensing [1] refers to a collection of statistical in-
ference procedures intended to determine the occupancy of a
particular communication channel. This is of critical impor-
tance in certain applications such as those employing dynamic
spectrum access [2]. When the bandwidth under analysis is
large, limitations on the analog-to-digital converters (ADCs)
together with computational issues impose restrictions on the
techniques implemented thus leading to the concept of wide-
band spectrum sensing. Previous works include [3], where
the goal is to optimize throughput subject to an interference
constraint, but the setting is sensitive to the well-known noise
uncertainty problem [4]. In [5], the noise power is not as-
sumed known, but a certain number of channels need to be
idle so that it can be easily estimated. A scheme that assumes
neither noise power knowledge nor free channels was pro-
posed in [6], but Nyquist sampling is required.

There has been a great interest in designing systems capa-
ble of acquiring frequency-sparse signals at a minimum rate.
Works of this kind include, for example, [7] and [8]. With the
boom of compressed sensing (CS) [9], this research line has
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been intensified (see e.g. [10]). Although most of these works
deal with perfect reconstruction, this is not needed for spec-
trum sensing since typically only the second-order statistics
are of interest. This observation has prompted recent schemes
showing that a considerable reduction in the sampling rate is
possible, even without the need for assuming sparsity [11,12].

This paper is pointed to exploit a further reduction in the
sampling rate arising when certain prior information is used.
Spectral masks and channelization parameters of the primary
signals, such as central frequencies and bandwidths, are pu-
blicly available in many practical situations. Consequently, it
is reasonable to assume that the received signal is a mixture
of statistically independent signals, each one representing a
channel received from a potentially different transmitter and
whose power spectral density (PSD) is known up to a scaling
factor related to the power of that transmission. Two Nyquist-
rate sensing schemes exploiting this kind of prior information
can be found in [6, 13]. We consider estimating these factors
using the sub-Nyquist measurements provided by an analog-
to-information converter (AIC) [14], whose operation princi-
ple can be thought of as projecting the analog signal onto a
set of discrete sequences called the measurement vectors.

After formalizing the problem in Sec. 2, we review max-
imum likelihood (ML) estimation for Gaussian signals in
Sec. 3, which is related to the classical problem referred to
as covariance matching [15] or structured covariance estima-
tion [16]. The numerical complexity required for the exact
computation of the ML estimate is extremely high in mod-
erately high dimensional settings, thus motivating the simple
approximation presented in Sec. 3.1, which achieves a similar
performance at a much more reasonable cost. This approx-
imation also suggests a method to estimate the parameters
when the Gaussian hypothesis does not hold true, leading
to the weighted least-squares (WLS) estimator of Sec. 4.
The estimation performance is then examined theoretically in
Sec. 5 and by means of simulations in Sec. 6.

Two final remarks: first, although we do not consider sig-
nal detection, the proposed estimators may be used for deci-
sion making, e.g. by using the generalized likelihood ratio
test (GLRT) [17]. Second, this paper focuses on algorithms,
whereas a more fundamental analysis discussing minimum
rates is the subject of [18] and subsequent publications.
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2. OBSERVATION MODEL

Suppose that a spectrum sensor receives a wideband signal
x(t) that is a linear combination of I independent zero-mean
wide-sense stationary signals xi(t), i = 0, 1, . . . , I−1, some
of them possibly representing noise or interference. The sig-
nal x(t) can thus be written as x(t) =

∑
i σixi(t), where

the non-negative real coefficients σi are to be estimated. The
conversion to the digital domain is carried out by an AIC that
producesM sampling sequences ym[k], m = 0, 1, . . . ,M−1
at the output by some kind of linear manipulation of x(t). Al-
though it may not have any physical existence, it is convenient
to express these observations in terms of the Nyquist-sampled
version of the received signal, x[n] = x(nT ), where T rep-
resents the reciprocal of the maximum frequency present in
x(t). Extending this idea to the components xi(t) we obtain
x[n] =

∑
i σixi[n].

The input samples x[n] are arranged as N -tuples, each
one giving rise to one sample at every output ym[k]. Specif-
ically, this relation is given by ym[k] = φHmx[k], where
φm ∈ CN and x[k] = [x[kN ], x[kN + 1], . . . x[kN +
(N − 1)]]T . By stacking these M outputs in the vector
y[k] = [y0[k], y1[k] . . . , yM−1[k]]T we obtain the more com-
pact form y[k] = Φx[k], where Φ = [φ0,φ1, . . . ,φM−1]H

is referred to as the measurement matrix. Further, if we
arrange all observations together, we can form the vector
y = [yT [0],yT [1], . . . ,yT [K/N − 1]]T and write y = Φ̄x,
where KT is the acquisition time1, Φ̄ = IK/N ⊗ Φ and
x= [xT [0],xT [1], . . . ,xT [K/N − 1]]T .

The second-order information of the signals xi[n] is col-
lected in the autocorrelation sequence ri[n] = E{xi[ν + n]
x∗i [ν]}, which is assumed known and normalized such that
ri[0] = 1). The Fourier transform of this sequence, when
it exists, is called the PSD of the process xi[n]. For com-
modity, let us arrange the coefficients in ri[n] as the elements
of the Hermitian Toeplitz correlation (or covariance) matrix
Σi = E

{
xix

H
i

}
, where xi = [xi[0], xi[1], . . . , xi[K − 1]]T .

The set of matrices S = {Σ0,Σ1, . . . ,ΣI−1} is assumed
R-linearly independent, in the sense that no two different
linear combinations of these matrices using real coefficients
can give the same matrix. Otherwise, the coefficients σ2

i

are not identifiable [19]. The covariance matrix of the
vector x = [x[0], x[1], . . . , x[K − 1]]T containing the re-
ceived signal, now written as x =

∑
i σixi, is given by

Σ = E
{
xxH

}
=
∑
i σ

2
iΣi. For convenience we also

consider the decomposition of Σ into N ×N blocks:

Σ =

 Σ[0] . . . ΣH [KN − 1]
...

. . .
...

Σ[KN − 1] . . . Σ[0]

 (1)

where Σ[k] = E
{
x[κ+ k]xH [κ]

}
. These blocks can be

written as Σ[k] =
∑
i σ

2
iΣi[k], where Σi[k] = E{xi[κ+ k]

1Throughout it will be assumed that K is an integer multiple of N .

xHi [κ]} are the corresponding blocks in Σi. The covari-
ance matrix of y is clearly given by Σ̄ = E

{
yyH

}
=

Φ̄ΣΦ̄H =
∑
i σ

2
i Σ̄i, where Σ̄i = Φ̄ΣiΦ̄

H . Thus, this
transformation induces a new set of basis covariance matrices
S̄ = {Σ̄0, Σ̄1,. . ., Σ̄I−1} whose blocks are given by Σ̄[k] =
ΦΣ[k]ΦH =

∑
i σ

2
i Σ̄i[k], where Σ̄i[k] = ΦΣi[k]ΦH . Fi-

nally, note that although these blocks are not Toeplitz, the
matrices Σ̄ and Σ̄i are block-wise Toeplitz, which means that
the processes ym[k] are jointly stationary.

3. ESTIMATION FOR GAUSSIAN SIGNALS

The Gaussian assumption makes the statistical characteri-
zation of the observations y completely determined by the
second-order statistics introduced in the previous section.
The probability density function of the observations can thus
be written as:

p (y;θ) =
exp

{
−yHΣ̄−1y

}
πMK/N |Σ̄|

, (2)

where θ = [σ2
0 , σ

2
1 , . . . , σ

2
I−1]T is the vector of unknown pa-

rameters. Although Σ̄ depends on this vector, we dismiss the
notation Σ̄(θ) for clarity. The ML estimate of θ given y is
the maximizer of (2) seen as a likelihood function, that is,
θML = arg maxθ p(y;θ). This optimization problem has
been widely analyzed and, up to now, no analytical solution
is known [20].

One possible alternative is to search for a value of θ that
makes the gradient of the log-likelihood function equal to
zero. Taking logarithms and disregarding constant terms in
(2) yields

L(θ) = log |Σ̄|+ Tr
(
Σ̄−1R̂

)
, (3)

where R̂ = yyH is the sample covariance matrix. By noting
that Σ̄ =

∑
i σ

2
i Σ̄i, it is possible to write the partial deriva-

tives as

∂L(θ)

∂σ2
i

= Tr
(
Σ̄−1Σ̄i

)
− Tr

(
Σ̄−1Σ̄iΣ̄

−1R̂
)
. (4)

Due to the regularity of this function, a maximum of L(θ) is
attained when the right hand side is zero for all i. After some
algebraic manipulations, this condition becomes

Tr
(

(Σ̄− R̂)Σ̄−1Σ̄iΣ̄
−1
)

= 0 ∀i. (5)

Obtaining numerically the solution of this system of equa-
tions has been analyzed in [16], where an algorithm called the
inverse iteration algorithm (IIA) is proposed. Unfortunately,
the cost of this algorithm is considerably high since it is appli-
cable to general non-stationary settings. Different approaches
have been proposed in [21] and [22], but they only work for
rank-one matrices.
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3.1. Approximate ML solution: averaging and cropping

Note that the complexity of the IIA is a consequence of the
relatively high dimension of the sample covariance matrix R̂.
Although this is a sufficient statistic for the estimation of θ,
it is clearly a non-consistent estimate of the true correlation
matrix Σ̄. Thus, it makes sense to consider replacing R̂ in
(2) by a consistent estimate of Σ̄ with a lower dimension. Al-
though a formal motivation of this approach can be provided
on the basis of the asymptotic theory of Toeplitz matrices, we
omit such explanation in favor of a more heuristical one due
to space limitations and leave the formalism to a subsequent
publication.

Two observations apply. On the one hand, it is common
practice in signal processing to estimate the autocorrelation
coefficients by computing the traditional biased/unbiased es-
timates [23]. On the other hand, it is clear that not all the co-
efficients are estimated with equal accuracy since they rely on
different numbers of samples. Both these remarks suggest es-
timating the correlation coefficients corresponding to lags−L
to L, for some choice of L satisfying L+1 ≤ K/N , and com-
pose the M(L+ 1)×M(L+ 1) sample covariance matrix Ŝ
whose k-th block is given by Ŝ[k] = 1

Kk

∑
κ y[κ+ k]yH [κ],

whereKk is a constant depending on k that takes on the value
Kk = K

N for the biased estimate and Kk = K
N − k for the

unbiased estimate. This matrix can be thought of as an av-
eraged and cropped version of the sample covariance matrix
R̂, which presents the advantage of being consistent and hav-
ing the same block structure as the true covariance matrix Σ̄.
Note that R̂ lacks these two properties.

Repeating the process leading to (5) gives the same ex-
pression2 with Ŝ featuring in place of R̂. Expanding (5) for
Σ̄ results in the following equivalent condition:∑

j

σ2
j Tr

(
Σ̄−1Σ̄iΣ̄

−1Σ̄j

)
= Tr

(
Σ̄−1Σ̄iΣ̄

−1Ŝ
)
∀i,

Note that this constitutes a linear system of equations in σ2
j ,

with I unknowns and I equations. Following the same idea
as the IIA, it is possible to iteratively attain a solution by re-
placing Σ̄ with that corresponding to the previous iterand. As
an initialization, a good choice seems to be Σ̄ = Ŝ. More de-
tails can be found in [16]. Although this algorithm, referred
to as the simplified IIA (SIIA), does not achieve the exact ML
solution, its complexity may be several orders of magnitude
below the IIA depending on the L chosen.

4. ESTIMATION FOR GENERAL SIGNALS

When the signals are not Gaussian, applying the IIA or SIIA
algorithms may make little sense. However, the averag-
ing/cropping procedure proposed for the SIIA provides us
with some guidelines to perform estimation in the general
non-Gaussian case. Note that when the number of samples

2Of course the dimensions of the covariance matrices should be modified
accordingly.

approaches infinity, Ŝ converges in probability to Σ̄ (see
e.g. [19]). In the absence of any other prior information
about the received signal, but the second-order statistics, this
remark suggests finding the vector θ that minimizes some
metric between Ŝ and Σ̄, for example the Frobenius distance
||Ŝ − Σ̄||2F . Since these matrices are block-Toeplitz, this
can be simplified by taking just one representative of each
block-diagonal and weighting it appropriately. If we define

ŝ = vec



LLŜ
H [L]
...

L1Ŝ
H [1]

L0Ŝ[0]

L1Ŝ[1]
...

LLŜ[L]


and vi = vec



LLΣ̄
H
i [L]
...

L1Σ̄
H
i [1]

L0Σ̄i[0]
L1Σ̄i[1]

...
LLΣ̄i[L]


,

where Ll = L + 1 − l accounts for the number of times the
l-th block is present in Ŝ or Σ̄i, then the problem can be
formulated as a LS program:

θLS = arg min
θ
||ŝ− V θ||2 (6)

where V = [v0,v1, . . . ,vI−1]. The reason for considering
the blocks Ŝ[k] along with their Hermitian versions ŜH [k] is
to naturally impose σ2

i ∈ R. Another alternative would be to
just consider the real and imaginary parts of the covariance
matrix blocks and operate directly on R.

Due to the scaling factors Ll, we may prefer to term this
algorithm the WLS algorithm. In principle, since the coeffi-
cients σ2

i are non-negative, the solution must be found using
constrained WLS (CWLS), although, for simplicity, one may
also consider using unconstrained WLS. Note that what we
actually do in the latter case is to project the sample corre-
lation Ŝ onto the space spanned by the I basis correlation
matrices in S̄. Unfortunately, in this case, some of the esti-
mated coefficients may be negative.

5. PERFORMANCE ANALYSIS

The asymptotic performance of the IIA is clearly determined
for the cases where this algorithm converges to the global
maximum of the likelihood function. In those cases, it pro-
vides the ML estimate, which is asymptotically unbiased and
efficient [24]. By construction, the simplified IIA is expected
to share the same asymptotic properties provided that L is
high enough so that the truncated (cropped) covariance matri-
ces in S̄ are still linearly independent. Unfortunately, evaluat-
ing the performance of these two algorithms for finite-length
data records seems not tractable, so that we are forced to re-
sort to Monte Carlo simulation in Sec. 6.

On the contrary, the performance of the unconstrained
WLS algorithm may be analyzed for finite data sets. If L is
chosen high enough such that the matrices in S̄ are linearly
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Fig. 1: Estimation error for an increasing number of samples
when N = 5 and M = 3.
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Fig. 2: Influence of the compression ratio when N is fixed to
30 and K = 900.

independent, then the columns of V in (6) are linearly inde-
pendent and we can write θLS = V †ŝ, where the superscript
† means pseudo-inverse. Thus, the estimate is linear with the
sample covariance Ŝ. This means that θML is unbiased in
case that Ŝ is so and vice versa. Moreover, although it is out
of the scope of the present paper, the second-order statistics
of this estimate may be written in terms of the fourth-order
statistics of x[n]. Finally note that the asymptotic perfor-
mance of the CWLS estimate coincides with that for the
unconstrained estimate whenever σ2

i > 0 ∀i, since the posi-
tivity constraints will automatically hold in the limit.

6. SIMULATION RESULTS

This section provides a comparison by Monte Carlo (MC)
simulation of the performance of the estimation schemes pre-
sented above. The first I − 1 signals xi[n] are generated
by passing white Gaussian noise of some specified power
through a low-pass prototype FIR filter of order 30 and band-
pass bandwidth 0.25/T for the first two figures and 0.05/T
for the last one. Every signal is then frequency shifted to oc-
cupy a different band. The last signal xI−1[n] is simply white
Gaussian noise. The value of L used is 4 in all cases.

The IIA algorithm was implemented by making use of
several extensions suggested in [16] since the raw iteration is
numerically quite unstable. The non-negativity constraint is
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Fig. 3: Effect of the number of channels when K = 500,
N = 5 and M = 3. All the signals have power 4 except for
the noise, which has power 9.

imposed by dividing the stepsize by two whenever the new θ
becomes negative. This also avoids problems with the condi-
tioning of the covariance matrix in the next iteration by keep-
ing Σ̄ away from the boundary of the positive definite cone.
This same updating rule was also used for SIIA.

To evaluate the performance, the components of θ are es-
timated, the PSD is reconstructed and the Euclidean distance
to the true one is computed to obtain the squared error. The
mean squared error (MSE) follows by averaging this quantity
over all realizations. The entries in the measurement matrices
Φ are drawn from independent Gaussian distributions with
zero mean and unit standard deviation. For the sake of gen-
erality, a different matrix is generated at every MC iteration,
thus making the results independent of any particular choice.

In Fig. 1, the MSE is represented vs. the number of sam-
ples K. We observe that all of them are effectively consistent
and that the SIIA performs asymptotically like the IIA. Next,
in Fig. 2, the effect of the compression ratio on the perfor-
mance of the estimators is illustrated. Clearly, the higher
the quotient M/N , the better the performance. ML is not
shown in this figure because of the high computational time
required, but it must be assumed to perform quite similarly
to the SIIA. Note that M/N = 1 corresponds to the Nyquist
rate whereas M/N = 0.5 corresponds to the Landau rate in
absence of noise [25]. Finally, the influence of the number
of channels I is shown in Fig. 3. As intuition predicts, the
higher I , the higher the uncertainty and the higher the error.

7. CONCLUSIONS

Observing that a typical spectrum sensing application only re-
quires the estimation of a few parameters, such as signal/noise
power, an important reduction in the sampling rate may be
accomplished by using compressive acquisition techniques.
Several low-complexity estimation techniques have been ap-
plied to this setting under a multichannel model. Among
other advantages, the proposed schemes are not sensitive to
the well-known noise uncertainty problem. Future work is
pointed to the analysis of the fundamental principles lying
behind these techniques.
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