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ABSTRACT

Herein, we consider asymptotic performance analysis of
eigenvalue-based blind Spectrum Sensing (SS) techniques for
large-scale Cognitive Radio (CR) networks using Random
Matrix Theory (RMT). Different methods such as Scaled
Largest Value (SLE), Standard Condition Number (SCN),
John’s detection and Spherical Test (ST) based detection are
considered. The asymptotic sensing bounds for John’s de-
tection and ST based detection techniques are derived under
a noise only hypothesis for sensing the presence of Primary
Users (PUs). These asymptotic bounds are then used as
thresholds for the SS decision and their performance is com-
pared with other techniques in terms of probability of correct
detection under both hypotheses. It is noted that the SLE
detector is the best for a range of scenarios, followed by JD,
SCN, ST. Furthermore, it is shown that noise correlation sig-
nificantly degrades the performance of ST and JD detectors
in practical scenarios.

Index Terms— Spectrum Sensing, Asymptotic Analysis,
Cognitive Radio, Random Matrix theory

1. INTRODUCTION

The opportunistic access of idle primary spectrum by other
systems without affecting the performance of primary own-
ers has been considered as a promising solution to improve
the spectral efficiency of future wireless networks. Several
dimensions such as frequency, space, area, polarization [1, 2]
and angular dimension of the signal space [3] have been con-
sidered in the literature [4] towards identifying and exploring
idle spectrum holes. In this direction, Spectrum Sensing (SS)
has been considered a key component for dynamic spectrum
access required by a Cognitive Radio (CR) system. Several
SS techniques have been proposed in the literature for sensing
the presence of a Primary User (PU) [4]. Furthermore, several
diversity enhancement techniques such as multi-antenna, co-
operative and oversampled techniques have been introduced
in order to enhance the SS efficiency in wireless fading chan-
nels [5, 6, 7]. These methods mostly consider the statistics of
the eigenvalues of the received signal’s covariance matrix us-
ing recent results from Random Matrix Theory (RMT). The

main advantage of eigenvalue based SS techniques in practi-
cal scenarios is that it does not require any prior information
of the PU’s signal and it outperforms Energy Detection (ED)
techniques, especially in the presence of noise covariance un-
certainty [5].

1) Related Work: Several eigenvalue based algorithms
have been proposed in the literature [5, 9, 10, 11, 12, 6, 7,
13, 14, 15] exploiting RMT methods. These techniques can
be categorized into Signal Condition Number (SCN) based
[5, 10, 14, 6], Largest Eigenvalue (LE) based [16, 17, 11] and
Scaled Largest Eigenvalue (SLE) based [18, 19, 20]. Fur-
thermore, several SCN based techniques such as asymptotic
[9], semi-asymptotic [5] and ratio based techniques have been
proposed utilizing the properties of the eigenvalues of random
Wishart matrices. The authors in [9] use the Marcenko-Pastur
(MP) law to test a binary hypothesis assuming the presence
of white noise. In [5], semi-asymptotic MME and EME algo-
rithms for SS have been proposed using the combination of
the MP based and Tracy-Widom (TW) distribution based ap-
proaches and in [10], ratio based technique has been proposed
using the Tracy-Widom Curtiss (TWC) distribution. A new
detection threshold has been proposed in [14] for improved
sensing performance in the presence of noise correlation. In
addition, a Signal to Noise Ratio (SNR) estimation technique
has been proposed to estimate the SNR of the PU signal in
the presence of correlated noise. In [21], non-asymptotic
behavior of eigenvalues of random matrices has been con-
sidered using the spectral properties of random sub-Gaussian
matrices of fixed dimensions. A cooperative SS algorithm us-
ing double eigenvalue thresholds has been proposed in [22],
which considers two maximum eigenvalues for the noise only
and the signal plus noise cases.

Recently, the distribution of the SCN of Wishart matrices
has been considered in signal detection for a CR [23]. In this
context, two types of condition numbers i.e., SCN (the ratio
of the maximum to the minimum eigenvalue) and Demmel
Condition Number (DCN) (the ratio of the matrix trace to the
minimum eigenvalue) have been considered. These two met-
rics provide a measure of rank deficiency of a matrix and their
statistical properties can be used in a variety of applications.
In [23], a general framework for the Cumulative Distribution
Function (CDF) of the SCN of different classes of Wishart
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matrices has been presented. In [24], the exact distribution of
the DCN for random matrices with arbitrary dimensions has
been presented. In [25], analytic expressions for the Prob-
ability Density Function (PDF) and CDF of the ratio of the
largest eigenvalue to the trace of complex Wishart matrices
with arbitrary dimensions have been derived.

In addition to the above mentioned methods, Spherical
Test (ST) based detection [13, 26, 27, 28] and John’s de-
tection [13] have also been considered in the literature. In
[28], a new sphericity test statistic has been proposed to de-
tect closely spaced sources with improved resolution and to
detect sources with lower SNRs. In [13], ST detector and
John’s detector have been used for SS purposes in the pres-
ence of multiple PUs considering white noise. However, the
effect of noise correlation on the performance of these detec-
tors has not been addressed in [13]. In practical scenarios,
noise correlation may arise due to imperfections in filtering
and oversampling in the receiver [5].

2) Contributions: In this paper, we study the perfor-
mance of different eigenvalue based blind SS techniques us-
ing asymptotic analysis. In the literature, asymptotic bounds
for LE, SLE and SCN methods have been proposed but the
asymptotic thresholds for ST detector and John’s detector
are still missing. In this direction, the main contribution of
this paper is the derivation of asymptotic thresholds for ST
and John’s detectors. Although finite approximations have
been considered in the literature [13] for these techniques,
the expressions for thresholds contain involved functions
and are complex to evaluate. In case of finite analysis, the
threshold is determined based on the probability of false
alarm (pfa) and choosing a correct pfa rate for a particular
system may be problematic in practical scenarios. On the
other hand, asymptotic thresholds are deterministic (“hard-
ening” effect) and allow for simpler sensing decisions under
both hypotheses [14]. Furthermore, they may provide more
accurate performance analysis of a sensing technique in pres-
ence of correlation. In this direction, another contribution of
this paper is to study the effect of noise correlation on the
performance of the considered SS techniques.

The remainder of this paper is structured as follows: Sec-
tion 2 provides the signal and channel model. Section 3
presents the test statistics and decision methods for consid-
ered eigenvalue based SS techniques. Section 4 presents the
theoretical analysis of ST and John’s detection methods under
noise only case. Section 5 compares the sensing performance
of different asymptotic methods with the help of numerical
results. Section 6 concludes the paper.

3) Notation Throughout the formulations of this paper,
boldface upper and lower case letters are used to denote ma-
trices and vectors respectively, E[·] denotes the expectation,
(·)T denotes the transpose matrix, (·)H denotes the conju-
gate transpose matrix, tr{·} represents the trace of a matrix,
λmax(·) and λmin(·) denote the maximum eigenvalue and the
minimum eigenvalue of a matrix respectively. Finally, (·)∞

denotes asymptotic deterministic values of random metrics.

2. SIGNAL MODEL

We consider a large CR network with M cooperating nodes1

and each node is equipped with a single antenna. The fac-
tor M corresponds to the number of antennas in single-node
multi-antenna assisted SS [18]. Let N be the number of ob-
servations collected by each CR node in the time duration of
τ . We consider a generic signal model assuming the presence
of multiple PUs, while the signal model for the case of single
PU can be considered as a specific case.

We assume that channel remains constant during the pe-
riod of sensing2 and the transmitted PU symbols are i.i.d.
complex circularly symmetric (c.c.s.) Gaussian symbols. A
single observation of the M × 1 received signal y in presence
of K PUs can be written as:

y =
K
∑

i=1

hisi + z = Hs+ z (1)

where s is K×1 transmitted signal i.e., s = [s1, s2, . . . , sK ]T ,
with si being a Gaussian symbol with power pi = E[s2i ]. The
M × K channel matrix H includes the channel coefficients
between PUs and M receive nodes i.e., H = [h1 h2 . . . hK ],
z is M×1 Gaussian noise vector with zero mean and variance
σ2. After collecting N samples for each receiving node, the
M ×N received signal matrix Y can be written as:

Y =
[

y1,y2 . . .yN

]

=











y1(1) y1(2) . . . y1(N)
y2(1) y2(2) . . . y2(N)

...
...

. . .
...

yM (1) yM (2) . . . yM (N)











Let us denote the hypotheses of the presence and absence of
the PU signal by H1 and H0 respectively. The binary hypoth-
esis testing problem for deciding the presence of a PU signal
can be written as:

H0 : Y = Z, H1 : Y = HS+ Z (2)

where S is the K×N transmitted signal and Z is the M ×N
Gaussian noise. Let us define sample covariance matrices
of received signal and noise as: RY(N) = 1

NYYH and
RZ(N) = 1

NZZH . Under noise only hypothesis, the sam-
ple covariance matrix of the received signal becomes equal to
sample covariance matrix of noise i.e., RY(N) = RZ(N). It
can be noted that since Z ∼ CN (0, I), ZZH follows an un-
correlated Wishart distribution [5] i.e., ZZH ∼ WM (Σ, N),

where Σ = E[ZZ
H ]

N . Let us denote the ordered eigenvalues of
RY by λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λM . It can be noted that since

1In practice, the cooperating nodes can be connected to a centralized de-
cision center with a backhaul link.

2This assumption does not affect the asymptotic thresholds since they are
based on H0 hypothesis statistics.
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our sensing threshold only depends on the H0 hypothesis i.e.,
on the eigenvalue properties of RZ, various channel and sig-
nal types can be considered under the considered framework.

3. TEST STATISTICS

1) Scaled Largest Eigenvalue Technique: The decision for
SLE method can be made on the basis of following binary
hypothesis testing [20]:

decision =

{

H0, if λmax(RY(N))
1

M
tr{RY(N)} ≤ T∞

SLE

H1, otherwise
(3)

where T∞
SLE is the asymptotic threshold for the SLE method.

2) SCN based Technique: The decision for SCN based
technique can be made in the following way [15]:

decision =

{

H0, if λmax(RY(N))
λmin(RY(N)) ≤ T∞

SCN

H1, otherwise
(4)

where T∞
SCN is the asymptotic threshold for the SCN method.

3) Spherical Test Method: The test statistic for this
method is calculated as the ratio of the geometric and arith-
metic mean of all eigenvalues [13]:

TST =
(det(RY(N)))

1/M

1
M tr(RY(N))

=

(

∏M
i=1 λi

)1/M

1
MΣM

i=1λi

(5)

The binary hypothesis testing based on this method can be
expressed as:

decision =

{

H0, if TST ≥ T∞
ST

H1, otherwise
(6)

where T∞
ST represents the asymptotic threshold for the ST

method.
4) John’s Detection Method: The test statistic for this

method is given as the ratio of the quadratic mean over the

arithmetic mean of all eigenvalues [13] i.e., TJ =

√∑
M

i=1
λ2

i∑
M

i=1
λi

.

The binary hypothesis testing based on this method can be
expressed as:

decision =

{

H0, if TJ ≤ T∞
J

H1, otherwise
(7)

where T∞
J represents the asymptotic threshold for JD detec-

tor.

4. ASYMPTOTIC ANALYSIS UNDER H0

The asymptotic analysis in the aforementioned problem is
based on the Marcenko-Pastur law which we mention here
for completeness.

Theorem 4.1 [8] Consider an M × N matrix F whose en-
tries are independent zero-mean complex (or real) random
variables with variance 1

N and fourth moments of order
O
(

1
N2

)

. As M,N → ∞ with N
M → β, the empirical distri-

bution of the eigenvalues of 1
MFFH converges almost surely

to a non random limiting distribution with density given by;

fβ(λ) = (1− β)
+
δ(λ) +

√

(λ− a)+(b− λ)+

2πβλ
(8)

where a = (1 −√
β)2, b = (1 +

√
β)2, δ(.) is a Dirac delta

function and (1− β)
+
δ(λ) represents the cardinality of zero

eigenvalues which can occur if M > N . The parameters a
and b define the support of the distribution and correspond
to λ∞

min and λ∞
max respectively and the ratio b/a defines the

SCN of 1
MFFH . The above limiting distribution is the MP

law with ratio index β.

Lemma 4.1 [8] The empirical distribution of FFH , with
F as in Theorem 4.1, converges almost surely to a nonran-
dom limiting distribution with density (8) whose moments are
given by;

lim
M,N→∞

1

M
tr{(FFH)k} =

k
∑

i=1

1

k

(

k
i

)(

k
i− 1

)

βi

1) Scaled Largest Value Technique: According to Lemma 4.1,
the asymptotic arithmetic mean of the eigenvalues equals:

lim
M,N→∞

1

M
tr{RY(N)} =

1

M
ΣM

i=1λi = β (9)

The largest eigenvalue converges to (1 +
√
β)2 as given by

the MP law in Theorem 4.1, and thus the asymptotic SLE
threshold converges to: T∞

SLE = (1 + 1/
√
β)2.

2) SCN Based Technique: Based on the above mentioned
MP law, the asymptotic SCN based threshold converges to:

T∞
SCN = (1+

√
β)2

(1−
√
β)2

.

Lemma 4.2 The asymptotic geometric mean of the eigenval-
ues converges to:

lim
M,N→∞

(

M
∏

i=1

λi

)1/M

= β exp (−1− (β − 1) log(1− 1/β)) (10)

Proof: The geometric mean can be rewritten as:
(

M
∏

i=1

λi

)1/M

= exp



log

(

M
∏

i=1

λi

)1/M


 = exp

(

1

M
ΣM

i=1
log (λi)

)

The argument of the exponent can be calculated by integrat-
ing over the MP distribution:

lim
M,N→∞

1

M

M
∑

i=1

log (λi) =

∫ b

a
log(x)fβ(x)dx (11)

The integration result in (10) follows after a series of change
of variables [29, 30] and Cauchy integration which are omit-
ted due to lack of space.
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3) Spherical Test Method: The asymptotic ST threshold
converges to: T∞

ST = exp (−1− (β − 1) log(1− 1/β)).
4) John’s Detection Method: According to Lemma 4.1,

the asymptotic quadratic mean of the eigenvalues converges

to: limM,N→∞
√

1
MΣM

i=1λ
2
i =

√

β2 + β. The asymptotic

JD threshold converges to: T∞
J =

√

1 + 1/β.

5. NUMERICAL RESULTS

1) Performance Metric: The ratio of correct sensing is used
as a performance metric to analyze the performance and it is
defined as the ratio of number of correct sensing to the num-
ber of total considered iterations under both hypotheses. This
ratio should be higher than 0.5 which is the ratio for coin-flip
decision making. This term can be expressed in terms of Pd

and Pf as: (Pd + (1 − Pf ))/2, where Pd and 1 − Pf de-
note the number of correct sensing out of the total considered
iterations under H1 and H0 hypotheses respectively.

2) Considering Finite Dimensions: The above mentioned
asymptotic thresholds will have non-zero variance while run-
ning simulations for finite dimensions. As a result, we have
to compensate for this variance in order to ensure that proba-
bility of false alarm under hypothesis H0 becomes negligible
for large noise variance. Let δST = E[T 2

ST ] and δJ = E[T 2
J ]

denote the variances for ST and JD detectors3 when consider-
ing large but finite dimensions, then the thresholds need to be
adjusted as: T̄∞

ST = T∞
ST − δST and T̄∞

J = T∞
J + δJ taking

into account the inequalities in Section 3.
3) Results: Figure 1 shows the ratio of correct sensing

versus SNR for different techniques with parameters β =
10, N = 100 in Rayleigh fading channel assuming the chan-
nel remains constant across during the period of sensing. In
this simulation settings, the values of δJD and δST are con-
sidered to be 0.04 and 0.03 respectively. These values were
calculated based on CDF curves of the decision statistics nu-
merically. From the result, it can be noted that SLE detector
performs the best among other detectors and JD detector per-
forms slightly worse than the SLE detector and better than
SCN-based and ST detectors. Furthermore, for 90 % correct
sensing, the SLE detector requires almost 3 dB less SNR as
compared to the ST detector, the JD detector requires almost
2 dB less SNR as compared to the ST detector and the SCN-
based detector requires almost 1 dB less SNR than the ST de-
tector. During simulation, it was observed that the same per-
formance ordering was preserved for multiple user scenario
and for Rician fading channel conditions.

To evaluate the performance of considered techniques in
presence of noise correlation, noise vector z was considered
to be correlated with E[zzH ] = R, which follows a left-
sided exponential correlation model with correlation coeffi-

3No compensation was needed for SCN and SLE since the asymptotic
thresholds cleared the support of the random values during finite-size simu-
lations.
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Fig. 1. Ratio of correct sensing versus SNR for different techniques in
Rayleigh fading channel (β = 10, N = 100)

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
at

io
 o

f c
or

re
ct

 s
en

si
ng

SNR, dB

 

 
SCN
SCN−correlated noise
ST
ST−noise correlated
SLE
SLE−noise correlated
JD
JD−noise correlated

Fig. 2. Ratio of correct sensing versus SNR for different techniques in
presence of correlated noise (β = 10, N = 100, SCN = 2.64)

cient ρ = 1−SCN
1+SCN [14]. Simulations were carried out with the

parameters β = 10, N = 100 and SCN = 2.64. Figure 2
shows the effect of noise correlation over different techniques
and it can be noted that JD detector has the worst performance
of all the techniques and SLE detector is the best in terms of
sensing performance in presence of correlated noise. The de-
tailed analysis of noise correlation effect on the SCN-based
techniques can be found in [14].

6. CONCLUSION

In this paper, an asymptotic analysis was presented for ST and
JD detectors under noise only hypothesis. The performance
of these techniques has been compared with other techniques
in different scenarios. It has been observed that the perfor-
mance of the SLE detector is the best for a range of scenarios,
followed by JD, SCN and ST. Moreover, it can be concluded
that the SLE detector is the best in terms of sensing perfor-
mance in the presence of correlated noise, while the perfor-
mance of the JD and ST detectors greatly deteriorates in the
presence of noise correlation. Finding an analytic method-
ology for calculating the finite variance δ for the considered
thresholds is an open issue for future work in this field.
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