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ABSTRACT
Wideband spectrum sensing is an important prerequisite for cogni-
tive radio access. A network sensing scenario comprising low-end
sensors is considered, with each sensor reporting a single randomly
filtered power measurement bit to the fusion center (FC), which es-
timates the ambient power spectrum from these bits. An adaptive
thresholding algorithm is proposed to improve the quality and speed
of power spectrum reconstruction. Upon receipt of each new bit, the
FC picks the threshold for the next sensor so as to cut off a half-space
from the feasible region along its Chebyshev center. Convergence
of this algorithm to the true finite-length autocorrelation is shown,
whose Fourier transform yields the power spectrum estimate. To
avoid the ‘downlink’ threshold communication overhead, an alter-
native algorithm is proposed, where each sensor pseudo-randomly
chooses its threshold from a suitable distribution, and the FC judi-
ciously polls sensors to form its power spectrum estimate.

1. INTRODUCTION

Wideband spectrum sensing is a prerequisite for cognitive radio, as it
forms the basis for adaptive spectrum sharing. Whereas most work
in spectrum sensing has focused on the signal’s Fourier spectrum
(i.e., the Fourier transform of the signal itself), it has recently been
argued [1] that estimating the power spectrum (the Fourier trans-
form of the signal’s autocorrelation) is more relevant for cognitive
radio and other applications. Unlike the Fourier spectrum, the power
spectrum can be estimated from a finite set of autocorrelation lags
using the Fourier transform. This parametrization has been recently
explored in [1], where a finite-length autocorrelation vector is esti-
mated by building an over - determined system of linear equations
from the (cross-) correlations of the outputs of a bank of periodic
modulators, which are linear in the input autocorrelation function.

Here we consider a network sensing scenario, comprising scat-
tered low-end sensors and a fusion center (FC). Each sensor reports
a single randomly filtered power measurement bit to the FC, which
then estimates the ambient power spectrum from the collected bits.
One advantage of distributed sensing is that it mitigates the hidden
terminal problem, shadowing, and fading. Another is that it opens
the door for crowdsourcing spectrum sensing, using smart phones
and other wireless devices.

Power spectrum sensing in this context has been first introduced
in [2]. The analog amplitude autocorrelation samples (i.e., very high
precision quantization) assumed in [1] cannot be used with scattered
low-end sensors that have limited communication capabilities. Nev-
ertheless, it was shown in [2] that adequate power spectrum sensing
is still possible from few bits, if one uses a suitable linear program-
ming (LP) formulation that exploits the autocorrelation parametriza-
tion and pertinent nonnegativity properties. Note that explicit wide-
band scanning at high frequency resolution is not possible when only
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few sensing bits are available; there are not enough bits for all narrow
sub-bands, hence more sophisticated aggregate sensing mechanisms
must be employed.

In [2], the sensing thresholds at the different sensors were con-
sidered to be fixed - in fact a common threshold was chosen for
all sensors, which was empirically tuned to ensure that a certain
top percentage of sensors generate positive reports. In this paper,
we consider adaptive thresholding and polling strategies to improve
the quality and speed of power spectrum reconstruction. We first
introduce a Chebyshev center adaptive thresholding (CCAT) algo-
rithm, where the threshold for each sensor is iteratively selected so
as to cut off a half-space from the presently feasible region along its
Chebyshev center, i.e., the center of the largest inscribed ball. By
solving an LP to compute each sensing threshold, we show linear
convergence of this algorithm to the true finite-length autocorrela-
tion vector, as more sensors report their feedback bits. To avoid the
threshold communication overhead, we also introduce a Chebyshev
center random thresholding (CCRT) algorithm, where each sensor
pseudo-randomly draws its sensing threshold from a suitable distri-
bution. Then, the FC sequentially polls the sensors that can provide
the most useful information bits for the estimation problem, while
leaving most sensors unpolled. Simulation results illustrate the good
estimation performance of CCAT and CCRT, which outperform [2].

Our problem formulation may be reminiscent of one-bit com-
pressed sensing [3, 4]. It has been shown in [3] that signals can be
recovered with good accuracy from compressive sensing measure-
ments quantized to just one bit per measurement. The flip-side is
that the number of one-bit measurements required for accurate re-
construction appears to be rather large, and the algorithm is more
cumbersome than in the case of real-valued measurements. This
one-bit framework has been extended in [4], where the signal is re-
covered using a generalized approximate message passing (GAMP)
algorithm, and the quantization threshold is selected for each mea-
surement such that it partitions the consistent region along its cen-
troid. The difference of our setup with one-bit compressed sensing
is that the latter does not exploit additional autocorrelation-specific
constraints, which are important in our context, and it requires sig-
nal sparsity, which is not necessary in our setup. In addition, the
GAMP algorithm assumes a signal with a separable distribution that
is known a-priori, which is not a valid assumption in general.

2. POWER SPECTRUM SENSING FROM FEW BITS

Wideband power spectrum sensing from few bits was first intro-
duced in [2], where the term Frugal Sensing was coined to under-
score that the approach targets heavily under-determined wideband
sensing scenarios involving only low-end sensors and low-rate com-
munication. Consider M scattered sensors measuring the ambient
signal power and reporting to a FC. It is assumed that every sen-
sor processes the same wide-sense stationary (WSS) received signal,
x(t), which is sampled using an analog-to-digital converter operat-
ing at Nyquist rate, yielding the discrete-time signal x(n). Differ-
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ences in path loss can be factored out via automatic gain control,
and frequency-selective fading can be mitigated by averaging the
measurements over longer periods, as shown in [2]. The Nyquist
sampling requirement can be lifted by using an equivalent analog
processing and integration chain [2]. Note that the power spectrum
is invariant with respect to timing offsets and phase shifts.

Sensor m ∈ {1, . . . ,M} then passes x(n) through a wideband
finite impulse response (FIR) filter with random complex pseudo-
noise (PN) impulse response gm(n) of length K:

gm(n) =

{
(1/

√
2K)(±1± j) if 0 ≤ n ≤ K − 1

0 otherwise

The filter sequence gm(n) can be generated using a PN linear shift
register, whose initial seed is unique for each sensor (e.g., its serial
number), and is assumed to be known to the FC. Using random PN
filters can also be motivated from a random projections viewpoint, as
for the compression matrix applied to sparse signals [3]. The filter’s
output sequence is expressed as zm(n) =

∑K−1
k=0 gm(k)x(n − k).

Let αm := E[|zm(n)|2] denote the average power of the WSS signal
zm(n). Each sensor estimates αm using a sample average:

α̂m =
1

N

N−1∑
n=0

|zm(n)|2 (1)

with limN→∞ α̂m = αm under appropriate mixing conditions. Fi-
nally, each sensor compares the estimated α̂m to a sensor-specific
threshold tm. If α̂m ≥ tm, then sensor m sends a bit bm = 1 to the
FC, otherwise it sends bm = 0.

Let rx(ℓ) := E[x(n)x∗(n − ℓ)] denote the autocorrelation se-
quence of x(n), define

qm(ℓ) :=

K−ℓ−1∑
n=0

gm(n+ ℓ)g∗m(n), ℓ = 0, . . . ,K − 1,

and define the following vectors:
gm := [g∗m(K − 1), g∗m(K − 2), . . . , g∗m(0)]T

xn := [x(n), x(n+ 1), . . . , x(n+K − 1)]T

rx := [rx(1−K), . . . , rx(−1), rx(0), rx(1), . . . , rx(K − 1)]T

r̃x := [rx(0),Re{rx(1)}, . . . ,Re{rx(K − 1)}, Im{rx(1)},
. . . , Im{rx(K − 1)}]T

qm := [qm(0), 2 Re{qm(1)}, . . . , 2 Re{qm(K − 1)},
2 Im{qm(1)}, . . . , 2 Im{qm(K − 1)}]T

where Re{·} and Im{·} denote the real and imaginary parts, respec-
tively. It can be shown that

αm = E[|zm(n)|2] = E[|xH
n gm|2]

= gH
mRxgm = qT

mr̃x (2)
where Rx is the K×K Toeplitz autocorrelation matrix. Thus, upon
receipt of bm = 1 (or bm = 0) from sensor m, the FC learns that
qT
mr̃x ≥ tm (resp. qT

mr̃x < tm), assuming sufficient averaging
such that sample averages converge to ensemble averages. Note that
since we only need to ensure that the inequality is not reversed, sam-
ple averaging requirements are considerably relaxed relative to high-
rate quantization.

A windowed estimate of the power spectrum can be obtained
from the K-lag autocorrelation as Ŝx(ω) =

∑K−1
ℓ=−K+1 rx(ℓ)e

−jωℓ.
A discrete NF -point estimate of the power spectrum can be obtained
as ŝx = Frx, where ŝx(f) = Ŝx

(
2πf
NF

)
, f = 0, . . . , NF − 1, and

F is the NF × (2K − 1) (phase-shifted) discrete Fourier transform

(DFT) matrix. Defining

Q :=

 0K−1 ĨK−1 −j ĨK−1

1 0T
K−1 0T

K−1

0K−1 IK−1 j IK−1

 (3)

where 0K−1 is a (K− 1) zeros vector, IK−1 is the (K− 1) identity
matrix, and ĨK−1 is the flipped (K − 1) identity matrix, then it easy
to see that rx = Qr̃x. Thus the discrete power spectrum estimate
can be obtained from r̃x as ŝx = FQr̃x = F̃r̃x, where F̃ := FQ.
Therefore, the goal is to estimate the real vector r̃x at the FC from
the few measurement bits {bm} received from the M sensors.

An LP formulation that minimizes the total signal power and
encourages sparsity has been proposed in [2] to estimate r̃x, using
equal sensing thresholds for all sensors. In the following section,
we propose an adaptive thresholding technique, and show that it can
significantly improve the power spectrum estimate.

3. ADAPTIVE THRESHOLDING

Consider a time-slotted bi-directional communication link between
the M sensors and the FC, comprising M time slots. At the begin-
ning of each time slot m ∈ {1, . . . ,M}, the FC sends the threshold
tm to sensor m. Sensor m then compares it’s measured αm with tm,
and responds with either bm = 1 or bm = 0 within the same slot.

Prior to receiving any information bits from the sensors, prop-
erties of the autocorrelation can be exploited to define an initial fea-
sible region for r̃x. First, an upper bound Pmax for the total sig-
nal power can be easily obtained from historical data yielding the
bounds: 0 ≤ rx(0) ≤ Pmax. Another well-known property is that
|rx(ℓ)| ≤ rx(0), for ℓ = 1, . . . ,K − 1. These inequalities define a
bounded polyhedron as the initial feasible region for r̃x:

P0 :=
{
y ∈ R(2K−1)| 0 ≤ y(0) ≤ Pmax,−y(0) ≤ y(ℓ) ≤ y(0),

ℓ = 1, . . . , 2K − 2
}
. (4)

When the FC receives all measurement bits {bm}Mm=1, the final fea-
sible region is defined by the polyhedron (ignoring αm estimation
errors):

PM = P0 ∩
{
y | qT

my ≥ tm if bm = 1,

qT
my < tm if bm = 0, m = 1, . . . ,M

}
. (5)

The volume of the feasible region PM gives a measure of ignorance
or uncertainty about r̃x ∈ PM ; a small PM implies that r̃x is local-
ized to within a small set, whereas a large PM means that there is
still much uncertainty about r̃x. In other words, a smaller feasible
region PM translates to higher accuracy in localizing r̃x. Thus, our
objective is to adaptively select the thresholds {tm}Mm=1 to ensure
that PM is as small as possible.

The proposed Chebyshev center adaptive thresholding (CCAT)
algorithm, which is implemented at the FC, can be explained as fol-
lows:

Given the initial polyhedron P0, its Chebyshev center y(0)
cc , and

{qm}Mm=1. For each time-slot/sensor m = 1, . . . ,M , do

1. Set the threshold tm = qT
my

(m−1)
cc , and send it to sensor m

requesting its measurement bit bm.
2. Upon receiving bm, update the feasible polyhedron:

Pm :=

{
Pm−1 ∩ {y | qT

my ≥ tm} if bm = 1

Pm−1 ∩ {y | qT
my < tm} if bm = 0

(6)

3. Find the Chebyshev center, y(m)
cc , of Pm.

Finally, an estimate r̂x of r̃x can be directly obtained as the Cheby-
shev center of PM , i.e., r̂x = y

(M)
cc .
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Fig. 1. Illustrative example for the CCAT algorithm.

The Chebyshev center of a polyhedron defined by a set of L
linear inequalities, P := {y | aT

i y ≤ di, i = 1, . . . , L}, can be
found by solving the LP [7, Sec. 8.5.1]:

max
R≥0,y

R

s.t. : aT
i y +R||ai||2 ≤ di, i = 1, . . . , L

(7)

The Chebyshev center is the point inside P that has the maximum
distance to the closest point in the boundary hyperplanes defining P
(i.e., the exterior of P), and it is also the center of the largest ball
that lies inside P [7].

Note that at the second step of the CCAT algorithm, the half-
space {y | qT

m(y − y
(m−1)
cc ) < 0} (or {y | qT

m(y − y
(m−1)
cc ) ≥

0}) is cut-off from the feasible region if bm = 1 (resp. bm = 0).
The selection of the threshold tm = qT

my
(m−1)
cc ensures that the

Chebyshev center of Pm−1 is a point in the trimmed half-space. This
ensures that a large portion of Pm−1 is omitted from the feasible
region, and that the new polyhedron Pm is considerably smaller than
Pm−1. An illustrative example for the CCAT algorithm in R2 is
given in Fig. 1, with M = 4, and a rectangular P0. The grey shaded
regions in the figure represent the union of planes inside P0 that are
cut-off from the feasible region after each bm is received, whereas
the final (small) feasible region P4, which includes r̃x, is unshaded.
It is worth noting that a similar approach has been used in solving
general convex and quasiconvex optimization problems [5, 6].

It can be shown that y(M)
cc → r̃x as M → ∞ using the pro-

posed CCAT algorithm, for {qm}Mm=1 drawn from a distribution
that satisfies certain conditions, and that the algorithm has a linear
rate of convergence. The convergence follows from Theorem 1 in
[5], which states that the sequence {ρm}∞m=1, where ρm is the ra-
dius of the largest ball that lies inside Pm, converges to zero. The
complete convergence proof will be presented in the journal version
of this work. Note that plotting the error ||y(m)

cc − r̃x||2 as a func-
tion of m shows the number of bits/senors required to obtained an
estimate r̂x that is within a certain ϵ estimation error.

The number of linear inequalities defining Pm increases at each
iteration of the algorithm, and hence the computational effort to com-
pute y(m)

cc increases. For a polyhedron that is defined by L linear in-
equalities, one approach is to keep only a fixed number J ≤ L of the
most relevant inequality constraints while dropping the other L− J
less relevant or redundant inequalities [5, 6]. We use the heuristic
method described in [6] to rank the L constraints, such that only
the J top-ranked inequalities are used in computing the Chebyshev
center of the polyhedron at each iteration. With proper choice of J
(> 10K), simulations have shown a negligible effect on the perfor-
mance, at a dramatic decrease in the total computation time of the
CCAT algorithm.

Instead of using the Chebyshev center of the polyhedron Pm−1

in computing tm, other options include the center of gravity, the
center of the maximum volume inscribed ellipsoid, and the analytic
center [6]. The complexity of each method can be captured by the
worst-case number of iterations (i.e., M ) required to achieve an ϵ-
error estimate, ||r̂x − r̃x||2 ≤ ϵ, in addition to the complexity of
computing each center at each iteration. Using the center of grav-
ity, the volume of the polyhedron is guaranteed to reduce by at least
37% at each iteration of the algorithm, and the number of iterations
required to achieve an ϵ-error estimate is at most O (K log(1/ϵ)).
However, computing the center of gravity of a polyhedron described
by a set of linear inequalities is NP-hard [6]. The number of iter-
ations required using the center of the maximum volume inscribed
ellipsoid is at most O

(
K2 log(1/ϵ)

)
[6]. Although the center of the

maximum volume inscribed ellipsoid is computed by solving a con-
vex problem, its computation is prohibitive for large K [7]. The an-
alytic center can be efficiently computed [7], but at most O

(
K2/ϵ2

)
iterations are required to achieve an ϵ-error [8]. Whereas no similar
convergence analysis has been developed for the Chebyshev center
(probably because the Chebyshev center can be strongly affected by
scaling or affine transformations of coordinates), exhaustive simu-
lations showed that the performance of CCAT algorithm is almost
identical to the case of using the analytic center, with much smaller
computation time to solve the LP (7).

If the number of sensors/time-slots M is small, and each sen-
sor is limited to send only a single bit, then it is recommended to
include the linear positivity constraint F̃y ≥ 0 to the initial poly-
hedron P0. Including this constraint results in a smaller-volume P0,
thus achieving better estimates r̂x for small M . However, the con-
vergence y

(M)
cc → r̃x for large M is no longer ensured, since F̃r̃x

can have negative values when the autocorrelation is truncated to fi-
nite K-lags. The pros and cons of including F̃y ≥ 0 in P0 are
further illustrated in the simulations in Section 5.

4. RANDOM THRESHOLDS AND SENSOR POLLING

The proposed CCAT algorithm requires that the FC sends a com-
puted threshold to each sensor at the beginning of its allocated time-
slot. To avoid this threshold communication overhead, it may be
more appealing to pre-assign the thresholds to the sensors.

We propose that each sensor randomly selects tm from a Gaus-
sian distribution with the same mean and variance as αm, which is a
random variable with respect to the random signal and the PN filter
of each sensor. This choice implies that the volume of PM is smaller,
on average, for r̃x that is closer to its expectation. Localizing r̃x
inside a small-volume polyhedron guarantees that the estimate r̂x
is close to r̃x. This is not the case, for example, if the thresholds
are chosen from a uniform distribution, or are fixed. The mean and
variance of αm can be obtained from historical data across different
signals and filters. The FC is assumed to know {tm}, because they
are pseudo-randomly generated at the sensors, e.g., based on sensor
ID as the seed for the PN generator.

Now, the FC sequentially selects the important sensors to poll,
requesting their feedback bit. Consider a time-slotted structure sim-
ilar to the CCAT algorithm, where at the beginning of each time-slot
the FC polls one sensor, which in turn responds with its feedback bit
within the same time slot. Let J denote the set of sensors that have
sent their feedback bits while J̄ denotes the set of remaining sen-
sors. The proposed Chebyshev center random thresholding (CCRT)
algorithm with pre-assigned thresholds can be described as follows:

Given the sets {qm}Mm=1, {tm}Mm=1, the initial polyhedron P0,
and its Chebyshev center y(0)

cc . Initialize k = 1. While k ≤ M , do
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1. For each m ∈ J̄ , find the distance between the hyperplane
{y | qT

my − tm = 0} and the Chebyshev center y(k−1)
cc :

dm =
|qT

my
(k−1)
cc − tm|
||qm|| (8)

2. Select the senor m∗ = argmin dm to be polled requesting
its measurement bit bm∗ .

3. Upon receiving bm∗ , delete m∗ from J̄ , add it to J , and
update the polyhedron:

Pk :=

{
Pk−1 ∩ {y | qT

m∗y ≥ tm∗} if bm∗ = 1

Pk−1 ∩ {y | qT
m∗y < tm∗} if bm∗ = 0

(9)

4. Find the Chebyshev center y(k)
cc of Pk by solving the LP (7).

5. Terminate if y(k)
cc = y

(k−1)
cc for the last β consecutive itera-

tions (β is a design parameter). Else, increment k and repeat.

Finally, an estimate of r̃x can be directly obtained as r̂x = y
(k̄)
cc ,

where k̄ is the last k at the algorithm’s termination.
Note that by polling sensor m∗ with the smallest distance be-

tween y
(k−1)
cc and the hyperplane {y | qT

my − tm = 0} at the k-th
iteration, we try to ensure that the Chebyshev center of Pk−1 is very
close to the hyperplane which defines the trimmed half-space. The
Chebyshev center y(k−1)

cc can be inside or outside the cut-off half-
space. Similar to the CCAT algorithm, this ensures that a large por-
tion of Pk−1 is omitted from the feasible region, and that the updated
polyhedron Pk is considerably smaller than Pk−1.

For sufficiently large M , the performance of the CCRT algo-
rithm is similar to the performance of the CCAT algorithm since
dm∗ → 0 as M → ∞. In other words, if M is sufficiently large,
then at each iteration k there exists a sensor m ∈ J̄ with dm ≈ 0,
and thus the CCRT algorithm becomes almost identical to the CCAT
algorithm. For small M , however, as more sensors are polled, it be-
comes harder to find sensors m ∈ J̄ with small dm. After some k
iterations, dm∗ becomes relatively large such that the half-space in-
formation obtained by polling any of the remaining sensors m ∈ J̄ is
redundant, and thus the feasible region polyhedron will not decrease
(i.e., Pk = Pk−1). When this limit is reached, the Chebyshev center
does not change, and thus the CCRT algorithm can be terminated
prematurely. Note that we need to check that y(k)

cc = y
(k−1)
cc for

the last β ≥ 1 iterations, since for some scenarios polling senor
m∗ = argmin dm does not change the Chabyshev center, whereas
polling another sensor m̄ ∈ J̄ − {m∗}, where dm̄ > dm∗ , yields
a smaller polyhedron with a different Chebyshev center. A small
β = 5 ∼ 10 is apparently sufficient. Due to the larger feasible re-
gion obtained at the termination of the CCRT algorithm with limited
M , the estimation error with the CCRT algorithm is generally larger
than that obtained with the CCAT algorithm.

5. NUMERICAL RESULTS

A filter length K = 12 and M = 300 sensors were considered
for the default CCAT and CCRT algorithm setups, and a sample-
size N = 6 × 104 is used by each sensor to compute αm. To
measure the quality of the estimate, we use the normalized mean

square error (NMSE), defined as NMSE(k) := E
[

||r̃x−r̂
(k)
x ||2

||r̃x||2

]
,

where r̂
(k)
x is the estimate of r̃x when the FC receives the k-th bit,

k = 1, . . . ,M . The expectation is taken with respect to the random
signals and the random impulse responses of the FIR filters, obtained
via more than 200 Monte-Carlo simulations. The NMSE as a func-
tion of the number of received bits k is plotted in Fig. 2. Fig. 2 shows
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Fig. 2. Performance of the CCAT and CCRT algorithms.

that NMSE(k) → 0 (i.e., r̂(k)x → r̃x) as k increases with the CCAT
algorithm, and confirms the linear rate of convergence. The figure
also shows that the NMSE obtained when using the analytic center
instead of the Chebyshev center (i.e., ACAT algorithm), plotted as
the dotted line, is very similar to (slightly worse than) the NMSE
of the CCAT algorithm, while computation time for the CCAT algo-
rithm is much lower. When the positivity constraint F̃r̂x ≥ 0 was
included to the initial polyhedron P0, the NMSE of the CCAT was
better than the default setting without the positivity constraint for
M < 150. But as more bits are received, the NMSE of the CCAT
with the positivity constraint saturates at 0.007, whereas the NMSE
of the CCAT without the positivity constraint continues decreasing
to zero. This shows that including the positivity constraint improves
the performance only up to moderate M ; for higher M it should be
omitted to enable convergence. When the filter length was increased
to K = 16, more sensors were needed to achieve the same NMSE
level obtained with K = 12, due to the additional number of un-
knowns that need to be estimated. Note that, on the other hand, the
resolution of the estimated power spectrum increases with K.

For the CCRT algorithm, each tm was randomly drawn from a
Gaussian with the same mean and variance as the random αm, ob-
tained via Monte-Carlo simulations. Fig. 2 shows that, for the first
80 polled sensors, the NMSE of the CCRT algorithm is similar to the
NMSE of the CCAT algorithm; thereafter the NMSE of the CCRT al-
gorithm saturates at 0.017. The NMSE obtained using equal thresh-
olds (with 100 sensors reporting bm = 1), and applying the r̃x-
estimation method proposed in [2], is also plotted in Fig. 2, yielding
a larger NMSE compared to the CCAT and CCRT algorithms. It is
worth mentioning that almost identical results were obtained when
only the most relevant J = 150 inequality constraints were con-
sidered when solving (7), using the constraint dropping technique
mentioned in Section 3.

6. CONCLUSIONS

We have introduced an adaptive thresholding algorithm that enables
the FC to estimate the ambient power spectrum from bits it receives
from scattered low-end sensors. By adapting the threshold for each
sensor so as to cut off a half-space from the feasible region along
its Chebyshev center, we derived an algorithm that outperforms [2],
which uses static threshold selection. An alternative pseudo-random
thresholding and polling algorithm was proposed to avoid the thresh-
old communication overhead. Our results underscore the impor-
tance of judicious threshold design / adaptation in the context of
distributed power spectrum sensing.
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