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ABSTRACT

In this paper adaptive Eigenvalue-Based Spectrum Sensing (EBSS)
techniques are proposed for multi-antenna cognitive receivers. In
cases where fading channels are involved, and hence real-time pro-
cessing is required, the adaptive techniques offer lower complexity
and exhibit improved performance as compared to the corresponding
batch EBSS techniques. At first, novel adaptive EBSS techniques
are developed for the Maximum Eigenvalue Detector (MED), the
Maximum-Minimum Eigenvalue Detector (MMED), and the Gener-
alized Likelihood Ratio Test (GLRT) schemes, respectively, based
on well-studied subspace tracking methods. Moreover, close ap-
proximations for the distribution functions of the adaptive test statis-
tics of the MED, MMED and GLRT schemes are derived in order
to compute the decision thresholds for a given probability of false
alarm. The performance of the adaptive EBSS methods is verified
via indicative simulations.

Index Terms— Eigenvalue-Based Spectrum Sensing, Cognitive
Radio, Subspace Tracking.

1. INTRODUCTION

Cognitive Radio (CR) provides an efficient way to utilize the avail-
able bandwidth in wireless communication systems. The main idea
of the CR concept is to allow non-licensed users (Secondary Users -
SUs) to transmit their data in a spectrum area that is licensed to the
so-called Primary Users (PUs) of the system. To this end, Oppor-
tunistic Spectrum Sharing techniques may be employed to optimize
the SUs transmissions without degrading the PUs’ performance [1].

A common approach is that the SUs establish their communi-
cation links only in the so-called “spectrum holes” of the PU sys-
tem, i.e., to spectrum areas that are temporarily unused by the corre-
sponding PUs. Key role in the aforementioned approaches play the
so-called spectrum sensing techniques which are employed by the
SUs in order to detect the spectrum holes. The performance of both
the PUs and SUs is highly depended on the successful detection of
the corresponding spectrum holes and, therefore, a significant part
of the recent CR literature is concerned with the design of efficient
spectrum sensing techniques.

Several spectrum sensing schemes have been proposed over the
last few years including energy-based detectors (EBD), e.g. [2],
eigenvalue - based spectrum sensing techniques (EBSS) [3]-[4], co-
variance - based spectrum sensing techniques [5], and cyclostation-
ary - based spectrum sensing techniques [6]. The EBD methods are
usually simple to implement, however, they require knowledge of
the involved noise variance. The EBSS methods (particularly, the
MMED and GLRT) may operate in a totally blind manner as they
do not assume any knowledge concerning the PUs’ signals or the
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noise variance, and also they may offer remarkably improved per-
formance for specific signal categories. However, this is done at the
expense of high complexity since they require computation of the
Singular Value Decomposition (SVD) of the received signal’s sam-
ple covariance matrix. Moreover, the computation of the involved
decision thresholds is generally based on the asymptotical (limiting)
distributions of the corresponding test statistics which, in general,
require large number of samples in order to achieve a satisfactory
performance. Recently, close approximations for the distribution
functions of the test statistics have been proposed in the literature,
[7]-[8], though they have quite a complex form. Thus, the compu-
tation of the decision thresholds is actually performed by numerical
methods which increase even further the computational complexity.

Therefore, mainly due to complexity, the EBSS techniques turn
out to be impractical for cases where fast fading channels are in-
volved and on-line signal processing is required. The main goal in
this paper is to develop low-complexity adaptive EBSS techniques
by relying on well-studied subspace tracking algorithms.

More specifically, the contributions of the present paper are the
following ones. At first, novel adaptive EBSS techniques, based on
well-known subspace tracking methods, are derived. Note that, to
the best of our knowledge, this is the first time that adaptive ver-
sions of the EBSS techniques are presented in the literature. Then,
the distributions of the adaptive test statistics are derived in order to
compute the required decisions thresholds. It turns out that accurate
approximations of the test statistics correspond to well-known tab-
ulated functions improving further the practicality of the new adap-
tive schemes over the batch ones. The proposed adaptive methods
are compared with the corresponding batch ones, in terms of perfor-
mance, for static and fading channels, under different SNR regimes.

The rest of the paper is organized as follows. In Section 2, a
brief description is given for the EBSS techniques considered in the
present paper. In Section 3, adaptive versions of the EBSS (AD-
EBSS) techniques are derived. In Section 4, the test statistics’ distri-
bution functions of the proposed AD-EBSS techniques and the cor-
responding decision thresholds are derived. Section 5 provides some
indicative simulations, and Section 6 concludes the work.

2. EIGENVALUE-BASED SPECTRUM SENSING

Let us assume that a single-antenna PU and a SU with Rx antennas
are operating in the same frequency band considering a typical inter-
weave CR scheme [9]. The time axis is assumed to be divided into
transmit time intervals (time-slots). This time-slot is considered as
the basic unit of time scheduling. At the beginning of each PU time-
slot (assuming perfect synchronization between the PU and the SU),
the SU senses the frequency band, and if no PU activity is detected,
then the SU employs the specific time-slot for its transmissions. Let
us also assume that during each sensing period the SU obtains N
sample vectors yn, 1 ≤ n ≤ N of dimension Rx × 1. In the as-
sociated spectrum sensing problem the following hypothesis test is
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considered,
H0 : yn = zn (1)
H1 : yn = hxn + zn, (2)

where zn is an Rx × 1 additive noise random variable modeled as
CN

(
0, σ2

z

)
, h is the Rx × 1 complex flat channel gain vector be-

tween the PU and the SU and xn is the transmitted PU symbol. That
is, under the hypothesisH0 the PU is idle and the signal yn received
at the SU contains only noise. On the other hand, under the hy-
pothesis H1 the PU transmits data and the received SU signal is a
superposition of these data (scaled by the channel gain) and noise.

The covariance matrix R of the signal vectors received at the SU
receiver, under the two hypotheses, is given by,

R = E{ynyHn } =

{
σ2
zIRx H0

σ2
xhhH + σ2

zIRx H1
, (3)

where E(·) denotes the expected value operator, σ2
x is the PU’s trans-

mitted signal’s variance and (·)H denotes the Hermitian of a matrix.
Let us assume that the ordered eigenvalues of matrix R are denoted
by λ1 ≥ · · · ≥ λRx . Under the hypothesis H0, all the latter eigen-
values are due to noise only, that is, λ1 = · · · = λRx = σ2

z . Under
the hypothesis H1, the first eigenvalue is given by λ1 = σ2

1 + σ2
z ,

where σ2
1 is the received PU signal’s noise power and the rest eigen-

values are given by λ2 = · · · = λRx = σ2
z . It is clear that the

eigenvalues of the covariance matrix can be used to form a sufficient
test statistics for the spectrum sensing problem. In the following
equations three different test statistics are defined.

TMED(λ1) =
λ1

σ2
z

, (4)

TMMED(λ1, λRx ) =
λ1

λRx

, (5)

TGLRT (λ1, . . . , λRx ) =
λ1

1
N−1

∑Rx
m=2 λm

. (6)

If the test-statistics’ value is above a predefined threshold, a decision
in favor of hypothesis H1 is taken and vice versa. The test statistic
TMED is commonly known as the Maximum Eigenvalue Detector
and it is proved to be the Generalized Likelihood Ratio Test (GLRT)
for the hypothesis testing of Eqs.(1)-(2) under the assumption that
only the noise variance is known to the SU (h and σ2

x are unknown)
[10]. The test statistic TGLRT is proved to be the GLRT for the pre-
vious hypothesis testing assuming also unknown noise variance to
the SU [10], [11], [12]. Finally, the TMMED test statistic is com-
monly known as the Maximum-Minimum Eigenvalue detector and
can be considered as a less complex form of the TGLRT one.

In practice, the SU does not know R and computes the sample
covariance matrix of the received signals, which is given by,

R̂ =
1

N

N∑
i=1

ynyHn . (7)

The noise eigenvalues of the sample covariance matrix are random
variables due to the finite number of samples that are used for its
computation. The distribution of these noise eigenvalues is used to
compute the decision threshold in a Neyman-Pearson sense for a pre-
defined probability of false alarm. Detailed information on how to
compute the decision thresholds is given in [3], [4] and [10].

3. ADAPTIVE EIGENVALUE-BASED SPECTRUM
SENSING

The batch EBBS techniques of the previous section are suitable in
cases where constant channels during the timeslots and PU-SU per-
fect synchronization can be assumed. However, if the channels are

varying within the timeslot, as it is the case with fading channels,
the EBBS techniques are impractical to use due to high complexity
(of the regularly required SVD computation) and the fact that they
demand a large number of samples as discussed in the Introduction.
Indeed, within the sensing period, there is high probability of a deep
fading event that could lead to the degradation in the performance
of the EBSS techniques. Therefore, the spectrum sensing techniques
must be applied more than once within each PU time slot, in order to
track the channel variations and avoid a PU “miss-detection” when
a deep fading event occurs. In cases where PU-SU perfect synchro-
nization can be assumed, once the SU takes a decision at the end of
the sensing period, this decision is valid for the rest of the timeslot
since the PU has decided (not) to employ that specific timeslot. That
is, even in cases where the involved channels can be assumed con-
stant within the timeslot, if the synchronization assumption is not
valid, the SU should be monitoring on a regular basis the spectrum
area under consideration in order to detect abrupt changes in the PU
system’s behaviour.

On-line implementations of the EBSS techniques, capable of
tracking the fading channels’ variations, can be derived by using
low-complexity subspace tracking (ST) algorithms. Several ST algo-
rithms have been proposed in the literature over the past years which
are able to track the desired subset of the subspace of a covariance
matrix with linear complexity.

In the proposed paper the complex version of the Fast Data Pro-
jection Method (FDPM) is employed [13]. The FDPM steps are
summarized in the following equations.

rn = UH
n−1yn (8)

Un = Un−1 ± µynrHn (9)
Un = orth{Un} (10)

Λn = αΛn−1 + (1− α)|rn|2, (11)

where Un and Λn are theRx×Lmatrix andL×1 vector that contain
the L principal (minor) eigenvectors and eigenvalues, respectively,
andα, µ are step size parameters. Note that in equation (9) the sign is
a (+) or (−) depending on whether the signal or the noise subspace,
respectively, is updated. An orthonormalization procedure is applied
in Eq.(10), based on a low complexity Householder transformation
[13], and Eq.(11) tracks the corresponding eigenvalues.

For the MED test statistic only the first (maximum) eigenvalue
is required, so Un is a Rx × 1 matrix and Λn is a scalar that con-
tains the current estimate of the maximum eigenvalue. The orthonor-
malization step is also reduced to a simple normalization one, i.e.
Un = Un/‖Un‖. In a similar way, the MMED test statistic is
estimated. At first, the signal subspace version of the FDPM is em-
ployed (with (+) in (9)) to track the maximum eigenvalue and then
the noise subspace version follows (with (−) in (9)) to track the min-
imum one. For the GLRT test statistic the complete FDPM (8)-(11)
is used since all the Rx eigenvalues of R̂n are required (6).

It is evident now that by employing the FDPM method, the SU is
capable of tracking, with low complexity, the value of any of the test-
statistics under consideration at every time index within the sensing
period. Therefore, once a new signal vector is received, the SU up-
dates the employed test-statistic and decides if a change in the state
has been occurred (from H0 to H1 and vice-versa). If full synchro-
nization between the PU and the SU slots is assumed the final deci-
sion can be taken at the end of the sensing period based on a number
of H1 decisions within the sensing period. That is, if a PU signal is
detected in a percentage p of the sensing period then the existence of
a PU signal is decided. The percentage p is used to calibrate the Pf
to a desired value. An increase in the value of p results in a decrease
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of Pf and Pd and vice versa.
In cases where no synchronization between the PU and SU com-

munication is assumed and hence continuous monitoring of the spec-
trum area of interest is required, the employment of the algorithm
presented in Table 1 is proposed. According to Table 1, the SU con-
tinuously updates the value of the corresponding test statistics and
decides that a change in the state have occurred if the test statistic
changes behaviour for a number of Nc consecutive received signals.
The parameter Nc is used for calibration of the rate of false alarms
and miss-detection events to the desired values. A small value of Nc
results in small detection delays and increased rates of false alarm to
abrupt changes in the PU behaviour and vice-versa.

4. TEST STATISTIC DISTRIBUTIONS AND DECISION
THRESHOLDS

In this section, the distribution function of each of the three test
statistics Eqs.(4)-(6) is derived for the adaptive case, under the hy-
pothesisH0, i.e., when no information signal is present in the signal
received by the SU. Based on eq.(11) of the FDPM, the distribution
functions of the involved test statistics can be tracked at every time
index n. The following lemma provides expressions for the afore-
mentioned distribution functions.
Lemma 1 The distribution functions of the adaptive MED, MMED
and GLRT test-statistics updated by eq.(11) for a SU ofRx antennas
under the hypothesisH0 can be approximated by the functions,

FTMED (x; ξ, ρ) =
γ(ξx, ρ)

Γ(ρ)
, (12)

FTMMED (x; ρ) = I x
x+1

(ρ, ρ), (13)

FTGLRT (x; ρ,Rx) = I (Rx−1)x
x+1

(ρ, (Rx − 1)ρ), (14)

respectively, where ξ = (1−αn)(1+α)

((1−α)(1−α2n))
, ρ = (1−αn)2(1+α)

((1−α)(1−α2n))
,

γ(x, ρ) =
∫ x
0
tρ−1e−tdt is the lower incomplete gamma function,

Γ(ρ) =
∫∞
0
tρ−1e−tdt denotes the ordinary gamma function and

Ix(ρ1, ρ2) =
∫ x
0
tρ1−1(1 − t)ρ2−1dt is the incomplete beta func-

tion.
Proof: Observe that, under hypothesis H0, the signal vector yn re-
ceived by the SU consists of i.i.d. complex Gaussian noise samples
CN (0, σ2

z). Since matrix Un−1 is orthonormal, the entries z
(i)
n of

vector zn = UH
n−1yn are also i.i.d. CN (0, σ2

z). From eq.(11), the
l − th eigenvalue of the covariance matrix is estimated as,

λl(n) =

n∑
i=0

αi(1− α)|z(i)n |2. (15)

According to the previous equation the MED test statistic can be
expressed as a weighted sum of chi-squared variables with each one
derived by squaring the absolute value of a random variable φi ∼
CN (0, 1). A close approximation to the previous distribution can be
derived by properly applying the results of [14] to our case. Let us
consider the following RV

T ,
m∑
i=1

wiζ
2
i , (16)

where ζi ∼ N (0, 1) and wi ∈ R. Welch, in a 1938 paper [14],
proposed an approximation of the distribution of variable T by a
scaled chi-squared distribution of ρ degrees of freedom. That is, T ∼
1
ξ
χ2
ρ, where ξ =

∑m
i=1 wi∑m
i=1 w

2
i

, ξ =
(
∑m

i=1 wi)
2∑m

i=1 w
2
i

and the corresponding
CDF is given by

FT (x; ξ, ρ) =
γ(ξ/2x, ρ/2)

Γ(ρ/2)
. (17)

It is now easy to see that, by defining wi = αi(1 − α)/2 and using
eq.(17) in the case of complex normal variables φi, we can apply the

Table 1: Adaptive EBSS

Initialization:
The SU detects the present state (H0 orH1) by applying the batch
EBSS for a sufficient number of received signals, until an initial
decision is taken.
for i = n→∞ do

Update the employed Test-Statistic T via the FDPM (8)-(11)
if T ≥ η,∀n ∈ [n − Nc, n] under H0 || T < η,∀n ∈ [n −
Tc, n] underH1 then

Raise an alarm, change in the state has been detected;
end if

end for
previous results to the MED test statistic (4). Moreover, observe that
the weights wi are actually terms of a geometric sequence enabling
as to compute closed forms for the parameters ρ and ξ. Thus, it can
be easily verified that ξ = 2(1−αn)(1+α)

((1−α)(1−α2n))
and ρ = 2(1−αn)2(1+α)

((1−α)(1−α2n))
.

Finally, by combining these results with eq.(17) the proof for MED
is completed.

In the case of the MMED test statistic we seek for the distribu-
tion of the ratio of two eigenvalues of matrix R̂n, that are estimated
via Eq.(11). The required distribution is equivalent to the distribu-
tion of the ratio TMED(λ1)

TMED(λRx )
. Therefore, the corresponding CDF

is equal to the one of the ratio of two independent TMED random
variables. In order to compute the latter CDF, a typical method for
the derivation of the ratio of two independent random variables can
be followed [15], though the detailed proof is omitted due to space
limitations. It turns out that the distribution of the MMED statistic
can be approximated by the beta prime distribution with the corre-
sponding CDF given by eq.(13).

Finally, the CDF of the GLRT test statistic can be computed by
firstly observing that the random variable

∑Rx
m=2 λm

∼ 1
ξ
χ2
(Rx−1)ρ, where the parameters ξ and ρ are defined as in the

case of the MED distribution. Then the CDF of the Ratio of the two
independent random variables λ1∑Rx

m=2 λm
is computed in a similar

way to the MMED test statistic’s one. As long as the CDF of the
ratio under consideration is computed, it is easy then to compute
the CDF of the scaled random variable TGLRT = λ1

1
Rx−1

∑Rx
m=2 λm

which is given by eq.(14).

As it can be seen from the results of Lemma 1, the CDFs of the adap-
tive test statistics involve the computation of well-known tabulated
functions and the same comment is true for their corresponding in-
verse functions. The latter observation enables the SU to easily com-
pute the decision thresholds in a Neyman-Pearson sense, for a pre-
defined probability of false alarm Pf , as opposed to the case of the
batch test statistics where usually numerical methods are required.
To proceed further, first, the decision threshold for the MED test
statistic is computed. We equivalently have

Pf = P
{
TMED > ηMED|H0

}
= 1− FTMED (x; ξ, ρ)⇒

ηMED = F−1
TMED

(
1− Pf ; ξ, ρ

)
. (18)

The decision thresholds for the adaptive MMED and GLRT test
statistics can be computed in a similar way, and are given by the
following equations,

ηMMED =
I−1

(
1− Pf ; ρ, ρ

)
1− I−1

(
1− Pf ; ρ, ρ

) (19)

ηGLRT =
I−1

(
1− Pf ; ρ, (Rx − 1)ρ

)
(Rx − 1)− I−1

(
1− Pf ; ρ, (Rx − 1)ρ

) (20)
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Fig. 1: CDFs of the test statistics underH0 Eq.(12)-(14)
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Fig. 2: Probability of Detection (Pd) for static channels

5. SIMULATIONS

In this section, some indicative simulation results are presented in
order to evaluate the performance of the adaptive EBSS methods.
We assume that the PU transmits a BPSK modulated signal. The
step of the FDPM algorithm is set to µ = 0.8/‖yn‖2.

In Figure 1, the theoretical CDFs of the MED, MMED and
GLRT adaptive test statistics under theH0 (Lemma 1) are compared
to the empirical ones when a block of N = 20 received signal
vectors at the SU is used to estimate them. The results of 10000
simulations are averaged so as to compute the empirical CDFs for
a SU receiver with Rx = 4. As it is shown, the derived theoretical
CDFs are very close to the empirical ones even for this small number
of received signals.

In Figure 2, the performance of the AD-EBSS techniques is
compared to the one of the batch ones in terms of the achieved prob-
ability of detection Pd under different SNR values for probability of
false alarm Pf = 0.1. The parameter a of the FDPM algorithm (11)
is set to a = 0.98. The performance is examined considering con-
stant channels within each timeslot of duration N = 100 symbols.
The taps of all the involved channels are derived as CN (0, 1) and
the results of 10000 realizations are averaged. The decision of the
AD-EBSS techniques is taken at the end of each timeslot. That is,
we first examine the performance of the AD-EBSS techniques in a
batch sense. Note that, even in the batch approach, the AD-EBSS
techniques exhibit reduced complexity compared to the batch ones,
as they do not require the computation of the update of the sample
covariance matrix given by Eq.(7). As it is shown, the adaptive ver-
sions of the test statistics achieve in general close performance to
the batch ones (or even better, in some cases). This is due to the fact
that the CDFs of the adaptive test statistics Eq.(12)-(14) are close
approximations to the exact ones, whereas for the batch case asymp-
totic expressions are used.

In Figure 3, the same experiment is repeated, though now, time-
varying channels are considered. The channels are derived by using
a typical Jakes fading simulator with fdTs = 0.01, where fd is the
Doppler frequency and Ts is the symbol period. Under this fading
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Fig. 3: Probability of Detection (Pd) for fading channels
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model, the involved channels are rapidly varying within each sensing
period resulting in degradation on the batch detectors performance.
In the present simulations, we set p = 0.18 for a targeted Pf = 0.1
and a = 0.8. As it is depicted, in Fig. 3, the performance of the
AD-EBSS techniques is clearly better than the one of the batch ones
since the former techniques are able to track the variations of the test
statistics within the sensing period (see Section 3).

Finally, in Figure 4 the mean detection delay in an abrupt change
is compared for each one of the batch and the adaptive EBSS tech-
niques for different SNR values. We consider timeslots of 1000 sym-
bols in which an abrupt change in the channel state occurred at a
random symbol time. The time which a change occurs is assumed
to follow a uniform distribution. The batch EBSS techniques are
employed for a block of a 100 symbols. That is, at every block the
sample covariance matrix is computed and then, the SVD is applied
so that the test statistics to be derived. The AD-EBSS techniques are
initialized by employing the batch ones for the first 50 received sig-
nals in order to determine the initial active hypothesis and then the
algorithm of Table 1 is used to update its values. The simulations
were derived for Nc = 5, 10 and 15 respectively, a = 0.98 and
Pf = 0.01. As it is shown, the adaptive versions detect the change
significantly faster than the corresponding batch ones. Moreover, the
probability of false alarm and miss detection events (not depicted due
to space limitations) is almost zero for Nc ≥ 10, for the AD-EBSS,
whereas for the batch ones it has always a constant value.

6. CONCLUSION

In this work, adaptive versions of well-known EBSS techniques
where developed for multi-antenna cognitive receivers. The pro-
posed adaptive techniques offer low complexity and improved per-
formance when fading channels are considered, i.e., in cases where
channel variations degrade the performance of the batch approaches.
In order to compute the decision thresholds for each one of the
adaptive test statistics, close approximations for the associated dis-
tribution functions were derived. The performance of the adaptive
EBSS methods was verified via indicative simulations.
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