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ABSTRACT

Distributed implementations of the Expectation-Maximization
(EM) algorithm reported in literature have been proposed for
applications to solve specific problems. In general, a pri-
mary requirement to derive a distributed solution is that the
structure of the centralized version enables the computation
involving global information in a distributed fashion. This
paper treats the problem of distributed estimation of Gaus-
sian densities by means of the EM algorithm in wireless sen-
sor networks using diffusion strategies, where the informa-
tion is gradually diffused across the network for the computa-
tion of the global functions. The low-complexity implemen-
tation presented here is based on a two time scale operation
for information averaging and diffusion. The convergence to
a fixed point of the centralized solution has been studied and
the appealing results motivates our choice for this model. Nu-
merical examples provided show that the performance of the
distributed EM is, in practice, equal to that of the centralized
scheme.

Index Terms— Distributed algorithms, expectation-max-
imization algorithms, Gaussian distribution, unsupervised learn-
ing, wireless sensor networks.

1. INTRODUCTION

Density estimation belongs to the general class of unsuper-
vised learning problems and is widely studied in fields like
data mining and machine learning, particularly in applications
like pattern classification and pattern recognition for image or
speech analysis, but also for clustering. In presence of hidden
variables, the EM algorithm provides a means to iteratively
compute the maximum likelihood (ML) estimator when the
data follows an exponential distribution [1]. Starting from
an initial set of estimates, the method alternates between an
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expectation (E) step, where the expected log-likelihood func-
tion of the observations is evaluated using the current esti-
mates, and a maximization (M) step, where the log-likelihood
function of the E-step is maximized with respect to the esti-
mates. Whereas the E-step performs computations using lo-
cal information only, the M-step performs computations us-
ing global information. A distributed implementation of the
algorithm for a wireless sensor network (WSN) entails there-
fore a reformulation of the computations such that they can
be performed locally at each node. Related contributions to
the literature propose distributed EM implementations where
the global sufficient statistics are computed using for instance
aggregation [2–5], or using a consensus-based scheme [6–8].
Aggregation strategies require the assignment of routing paths
or junction trees within the network, whereas consensus type
strategies result in an increase in the total number of itera-
tions until convergence, since a consensus algorithm [9, 10]
is fully executed at each M-step. Based on diffusion strate-
gies [11–13], a distributed EM is proposed in [14] where the
authors use the results from [15] to show that their imple-
mentation is a Robbins-Monro stochastic approximation to
the centralized EM approach. A similar scheme is proposed
in [16] for tracking applications using particle filtering, and a
diffusion adaptation scheme is proposed in [17] for learning
in Gaussian mixture models (GMM).

In this paper we present a novel Diffusion-Based Dis-
tributed EM (DB-DEM) algorithm for density estimation and
classification in WSNs. The method is based on a distributed
algorithm derived for ML estimation in presence of unreli-
able observations [18]. Whereas the problem of unreliable
observations in [18] could be seen as a particular case of a
GMM, we address here the general case of density estimation
under the assumption of GMM’s. The main idea behind the
DB-DEM algorithm is that the diffusion of the information
across the network is embedded in the iterative update of the
parameter estimates. Therefore, the M-step could be seen as
a two time scale operation where a faster term for informa-
tion diffusion is combined with a slower term for informa-
tion averaging, and differing therefore from [14–17] which
assume a single time scale operation. As opposed to most
diffusion adaptive techniques which consider constant step-
sizes, e.g. [16, 17], we consider here time-varying step-sizes
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in order to converge to the desired values. The advantage
of the DB-DEM with respect to the consensus-based EM al-
gorithm in [6–8] is a significant reduction in the total num-
ber of iterations, since only one averaging operation is per-
formed at each M-step. This reduction in the number of it-
erations can be translated into energy savings, a critical issue
specially in large-scale deployments. Although not included
due to lack of space, the convergence of the DB-DEM algo-
rithm to a fixed point of the centralized EM solution has been
studied for different choices of the control parameters. Nu-
merical examples provided here show that the performance
of the DB-DEM is, in practice, equal to that of the central-
ized scheme. The paper is organized as follows. In section 2
we describe the observation model and derive the expressions
for the centralized EM algorithm. Section 3 presents the DB-
DEM for density estimation in WSN’s under the assumption
of GMM’s. Simulations results and conclusions are presented
in sections 4 and 5 respectively.

2. PROBLEM FORMULATION

2.1. Observation Model

Consider a set of N independent observations indexed with
i� 1,� � �, N . A D-dimensional observation vector yi is formed
with variables drawn from a set of M Gaussian densities with
probability distribution N pyi|µm,Σmq, where µm P RD�1

is the vector of means and Σm PRD�D is the covariance ma-
trix @m � t1,� � �,Mu. Let z P RN�1 be an indicator vector
with the ith entry zi�m if the ith observation belongs to the
mth density. The probability density function (pdf) for yi is
given by

fpyiq �
M̧

m�1

πmN pyi|µm,Σmq (1)

where πm is the prior probability of observing the mth Gaus-
sian, i.e., πm � Prtzi � mu for all i with

°M
m�1 πm � 1.

We regard the vector y � ryT1 � � �y
T
N s

T as the incomplete ob-
servation and ty, zu as the complete observation. Since z is
unknown, we treat it as a random variable (r.v.). The set of un-
known parameters to be estimated is therefore the tuple θ �
tπ,µ,Σu, where π � tπ1, � � � , πMu, µ � tµ1, � � � ,µMu,
and Σ � tΣ1, � � � ,ΣMu.

2.2. Centralized EM Algorithm

The ML estimator has the desirable properties of being un-
biased and asymptotically efficient as the number of samples
goes to infinity, and the EM algorithm is a numerical method
to iteratively compute the ML estimates in the presence of
incomplete observations. Under mild conditions, it is guar-
anteed to converge to a -local- maximum of the likelihood
function [19]. Assuming a centralized approach in which the
vector of observations y is available, at time t one performs

the following:

1. E-step: given an estimate θ̂t�1 � tπ̂t�1, µ̂t�1, Σ̂t�1u,
where π̂t � tπ̂t1, � � � , π̂

t
Mu, µ̂ � tµ̂t1, � � � , µ̂

t
Mu, Σ̂ �

tΣ̂t
1, � � � , Σ̂

t
Mu, compute the conditional expectation

Qpθ̃ ; θ̂t�1q � Eztlog fpy, z | θ̃q | θ̂t�1,yu (2)

where θ̃ denotes a trial value of θ.

2. M-step: obtain the estimate for the next iteration as

θ̂t � arg max
θ̃

Qpθ̃ ; θ̂t�1q.

Note that we can write Qpθ̃ ; θ̂t�1q �
°N
i�1Qipθ̃ ; θ̂t�1q due

to independence of the pairs tzi,yi,@iu, where

Qipθ̃ ; θ̂t�1q � Ezitlog fpyi, zi | θ̃q | θ̂
t�1,yiu

Therefore,

Qipθ̃ ; θ̂t�1q�Ezi
!

log
�
fpyi | zi, θ̃q � Prpzi | θ̃q

	
| θ̂t�1,yi

)

�
M̧

m�1

ζ̂tm,i log
�
π̃mN pyi|µ̃m, Σ̃mq

�
(3)

where

ζ̂tm,i � Prpzi � m | θ̂t�1,yiq

�
π̂t�1
m N pyi|µ̂

t�1
m , Σ̂t�1

m q°M
l�1 π̂

t�1
l N pyi|µ̂

t�1
l , Σ̂t�1

l q
(4)

is the (a posteriori) probability of having observed the mth

Gaussian density given yi and the estimates from the previous
iteration. Hence, the expression in (2) is equal to

M̧

m�1

Ņ

i�1

ζ̂tm,i log π̃m�
M̧

m�1

Ņ

i�1

ζ̂tm,i logN pyi|µ̃m, Σ̃mq. (5)

The estimator for the a priori probability for the mth density
is obtained maximizing the expression above with respect to
π̃m subject to the constraint

°M
m�1 π̂

t
m � 1, whereas the es-

timators for the mean and the covariance matrix are obtained
maximizing it with respect to µ̃m and Σ̃m, i.e.,

π̂tm �
1

N

Ņ

i�1

ζ̂tm,i (6a)

µ̂tm �

°N
i�1 yiζ̂

t
m,i°N

i�1 ζ̂
t
m,i

(6b)

Σ̂t
m �

°N
i�1pyi� µ̂

t
mqpyi� µ̂

t
mq

T ζ̂tm,i°N
i�1 ζ̂

t
m,i

(6c)

It is well known that the EM algorithm is guaranteed to con-
verge to a local maximum of the likelihood function, but it is
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sensitive to the initialization of the parameters. Therefore, in
order to start up the iteration, a suitable initializer is needed.
Notice that the a posteriori probabilities in (4) require knowl-
edge of local information only, whereas the estimates in (6)
require knowledge of global information. Therefore, a dis-
tributed implementation of the EM algorithm entails the com-
putation of (6) in a distributed fashion.

3. DIFFUSION-BASED EM ALGORITHM

Based on the distributed implementation of the EM algorithm
in [18], we propose a scheme where the summations among
all observations in (6) are computed by the network via diffu-
sion. Let us assume a WSN composed of N nodes where the
communications for each node are restricted to a small neigh-
borhood. The information flow among the nodes is described
by means of an undirected graph G � tV, Eu, where V is the
set of vertices (nodes) and E is the set of edges (links) eij
@ti, ju P V with eij � eji [20]. The set of neighbors of node
i is denoted as Ni � tj P V : eij P Eu for all i � 1,� � �, N .
We further assume that the network is connected such that
there is a path between any pair of nodes ti, ju P V . Consider
then a weight matrixW P RN�N with a nonzero tijuth entry
Wij only if j PNi and i PNj . W is assumed symmetric and
satisfies

iq 1TW � 1T ,W1 � 1, ρpW � 11T

N q   1,

where 1 is an all-ones vector and ρp�q denotes spectral radius
[9].

Further, for any node i and any time instant k ¥ 0 define
the following vector of length L�Mp1�D�D2q�1

fpi, kq � r1, ζ̂k1,i, � � � , ζ̂
k
M,i, (7a)

ζ̂k1,iy
T
i , � � � , ζ̂

k
M,iy

T
i , (7b)

ζ̂k1,ivecpyiyTi q, � � � , ζ̂
k
M,ivecpyiyTi qs

T (7c)

where vec(�) denotes the operation of vectorizing a matrix.
Note that the entries from 2 to M �1 of fpi, kq are the esti-
mates at time k of the a posteriori probabilities, the following
D �M entries correspond to the product of the a posteri-
ori probabilities and the observation vector, whereas the last
D2�M entries correspond to the product of the a posteriori
probabilities and the entries of yiyTi . The distributed EM es-
timator based on the DB-DEM algorithm in [18] is described
below:

—————————————————————–
At each node i, for m� 1,� � �,M

1. Initialize:
π̂0
m, µ̂0

m, Σ̂0
m.For k ¥ 1

2. E-Step: given π̂k�1
m , µ̂k�1

m , Σ̂k�1
m , compute the a pos-

teriori probabilities ζ̂km,i according to (4) and define
fpi, kq according to (7).

3. M-Step: For l � 1,� � �, L compute:

φlpi, kq � p1�βkq
Ņ

j�1

Wijφlpj, k�1q

� αk

Ņ

j�1

Wijflpj, kq (8)

and update the parameters as follows:

π̂km �
φm�1pi, kq

φ1pi, kq
, µ̂km �

�
φ∆µpi, kq

φm�1pi, kq


T

Σ̂k
m � vec�1

D�D

�
φ∆Σpi, kq

φm�1pi, kq



� µ̂kmrµ̂

k
ms

T

where ∆µ�rM�pm�1qD�2 : M�mD�1s,
∆Σ �rMp1�Dq�D2pm�1q�2 : Mp1�Dq�D2m�1s,
and

αk �
1

k
, βk �

1

kδ
, 0   δ   1. (9)

4. Repeat steps 2 and 3 until convergence.
—————————————————————-

Table I: DB-DEM Estimator

Remark that the computation of φlpi, kq in (8) at each
node i, at time k and for all l � 1,� � �, L, entails communica-
tion with neighboring nodes only, since φlpj, kq is nonzero for
j P Ni only. The step-size parameter αk in (8) controls the
rate of information diffusion across the network, whereas the
parameter βk controls the rate of information averaging. Note
that ∆µ and ∆Σ define the intervals of subindices to choose
the entries used for the computations. Finally, note also that
for k � 1, the first term on the right-hand side of (8) is zero,
so the initial condition φlpi, 0q is irrelevant. Based on conver-
gence results not included here due to lack of space, we claim
that the DB-DEM converges to a fixed point of the centralized
EM solution for a proper initialization of the parameters, pro-
vided that assumption iq holds and assuming the step-sizes αk
and βk in (9). In fact, the convergence to a fixed point of the
centralized solution has been studied for different values of
the control parameters αk and βk, showing that an attractive
feature of the DB-DEM is its robustness with respect to this
choice, as it has been verified by the numerical results.

4. SIMULATION RESULTS

The analytical results are supported with computer simula-
tions of a WSN composed of N � 50 nodes randomly de-
ployed on a unit square with connectivity radius rc � 0.2.
The step-size parameter βk � 1{kδ is chosen with δ � 0.85,
and we assume mixture model of M �2 Gaussians. For sim-
plicity, we consider D � 1, i.e., the 1-dimensional case with
µ1 � 2, µ2 � 4, σ1 � 0.4, σ2 � 0.2, π1 � 0.3, π1 � 0.7 where
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Fig. 1. Evolution of the mean estimates as a function of k for
all nodes. The centralized solution is included as a reference.

the nodes initialize the estimates equally with µ0
1�0, µ0

2�5,
σ0

1 � 0.5, σ0
2 � 0.3 and π0

1 � π0
2 � 0.5. The DB-DEM algo-

rithm is run assuming a Metropolis weight matrix with entries
defined as

Wij �

$&
%

1{p1 � maxt|Ni|, |Nj |uq j P Ni

1 �
°
kPNiWik i � j

0 otherwise

where | � | denotes cardinality [21]. In summary, the weights
assigned to the data arriving from neighboring nodes are de-
cided locally. Fig. 1 depicts the evolution of the mean esti-
mates for each node as a function of the iteration index k for
one random realization, whereas Fig. 2 depicts the evolution
of ζ̂1,i and ζ̂2,i. Clearly, the nodes are able to estimate the
parameters for each density. In particular, for classification
applications where the nodes make a decision based on the a
posteriori probabilities, we observe from the simulations that
a correct classification can be made after approximately 50
iterations. Finally, Fig. 3 depicts the log-likelihood function
Qpθ̂t�1 ; θ̂t�1q computed as in (5) for the DB-DEM estimator
(solid line) along with the curves for the centralized EM solu-
tion (dashed-dotted line) and a consensus-based EM (dashed
line) [6–8]. In order to make a fair comparison, and since the
curves for the DB-DEM and for the centralized EM have con-
verged after approximately 100 and 10 iterations respectively,
we run a consensus-based EM with 10 averaging iterations at
each M-step. Clearly, the truncation of the averaging com-
putation after only 10 iterations is not enough to estimate the
parameters correctly. In summary, a higher number of averag-
ing iterations per M-step is required by the consensus-based
scheme to obtain better results.
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Fig. 2. Evolution of ζ̂1,i and ζ̂2,i vs. iteration index.
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Fig. 3. Log-likelihood function vs. iteration index for the
DB-DEM, the centralized EM and a consensus-based EM.

5. CONCLUSIONS

The problem of distributed density estimation and classifica-
tion under the assumption of Gaussian mixtures models has
been addressed in this paper. A distributed expectation-max-
imization estimator has been derived for wireless sensor net-
works using diffusion strategies, where the information dif-
fusion across the network is embedded in the iterative update
of parameter estimates. The advantage with respect to prior
art relies in the simplicity of the iterative algorithm including
the two time scale M-step, a reduction in the number of itera-
tions with respect to consensus-based schemes, the robustness
with respect to the choice of step-sizes, and the existing con-
vergence analysis supporting the model. Numerical examples
provided show that the performance of the distributed EM is,
in practice, equal to that of the centralized EM solution.
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