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2Magister Solutions Ltd., Jyväskylä, Finland

ABSTRACT

Sleeping cell detection in a wireless network means to find the
cells which are not working properly due to various reasons.
The research in the area has mostly focused on cell outage
detection, e.g. due to hardware failures at the base station
antennas or non-optimal network planning. In this paper we
extend the research into a more challenging setting which is
overlooked in the literature: the case where no outages occur
in the network. The essence of the proposed method for de-
tection of problematic cells is to analyze the sequences of the
events reported by the mobile terminals to the serving base
stations. The suggested n-gram analysis includes dimension-
ality reduction and classification of the data and ends up with
providing a set of abnormal users, which at the end reveal
the location of the problematic cell. We verify the proposed
framework with simulated LTE network data and using the
minimization of drive testing (MDT) functionality to gather
the training and testing data sets.

1. INTRODUCTION

Self-healing, which is a part of self-organizing network con-
cept, means automated detection of problems or malfunction-
ing in the radio network elements and actions to automatically
recover from these problematic situations [1]. Most of the
works considered so far have focused on cell outage detection
(see e.g. [2–4] and references therein) and management [5, 6].
Reasons for outage situations are many, but the usual ones are
hardware problems in base station antennas, improper radio
network planning, erroneous antenna tilt or transmit power.
Hence the usual approach for cell outage detection is to an-
alyze several key performance indicator (KPI) measurements
from both base stations and mobile terminals.

Latest works in this line of research were recently pub-
lished by the authors in [7] and [8]. The approach in [7] was
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to analyze the data set of signal strength and quality measure-
ments reported by mobile terminals. These measurements
contained both serving and neighboring cell measurements
in LTE network according to minimization of drive testing
(MDT) functionality specified by 3GPP. The main finding
was that advanced data mining and machine learning tech-
niques, which rely on autonomous learning of network be-
havior, were able to reveal latent abnormal behavior in the
high dimensional data set of RF measurements and can thus
be used to pinpoint a problematic cell in the network. In [8]
this approach was extended by targeting to find similarities
between periodical measurement reports and reports related
to failures happened before at the radio link. By this way one
was able to substantially increase the number of samples (in
addition to true failure reports) which indicated the existence
of a problem in specific cells, resulting in more reliable and
faster detection.

All the above-mentioned approaches rely on the measure-
ments of the radio environment, which however, are able to
reveal only radio related problems. In this paper we extend
the scope of problem detection in radio networks by consid-
ering the case where radio coverage outages do not exist. This
is a relevant case in practice e.g. when there exists hierarchi-
cal cells (pico/micro/macro) in the same area or when the real
problem of a particular cell is not radio related at all. An
example of the latter case is a software bug or a malfunction-
ing protocol. Detecting a cell having such problems is no
longer doable by analyzing RF measurements, but calls for
another approach. A relevant solution where the problematic
cell was detected by investigating graphs constructed from the
reported neighboring cell patterns can be found in [4]. The
essence of this paper is to employ more generic approach by
analyzing the sequences of events reported by mobile termi-
nals to the serving base stations. Subsequently, the approach
will end up with providing a set of abnormal users (or calls)
in the networks, which can be utilized at the end to reveal the
location of the problematic cell.

2. SLEEPING CELL PROBLEM

Sleeping cell is a special kind of cell degradation. A cell is
called degraded in case if it is not 100% functional - its ser-
vices are suffering in terms of quality what affects user ex-
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perience. There exist a vague classification of degraded cells
depending on how much they affect the network operation
(partly based on [9]). The first type is impaired cell - which
still carries some traffic, but the performance characteristics
are slightly lower expected. The second kind of degradation is
crippled cell, characterized by a severely decreased capacity.
The last, clearly most critical type of sleeping cell is catatonic
cell - kind of outage which leads to complete absence of ser-
vice in the faulty area and cell does not carry any traffic and
for that reason it is important to timely detect such cells and
apply recovery actions.

Usual degraded cell produces fault alarms which are avail-
able to mobile network operator. In opposite, in sleeping cells
degradation appears seamlessly and no direct notification to
the service provider is given.

Different hardware or software failures can cause appear-
ance of a sleeping cell and due to that it is considered to be a
complex umbrella term. In this research we investigate cata-
tonic sleeping cells with RACH (Random Access Channel)
problem described in further details in Section 4.

3. DETECTION FRAMEWORK

3.1. N-Gram Analysis

An n-gram is defined as a subsequence of n terms. These
terms can be e.g. letters or words from a sequence. The analy-
sis results in statistics regarding the frequency of occurrence
of n-grams within string sequence. Thus, feature vector of n-
gram frequencies can be assembled from the string sequence.

N -gram analysis is widely used in spheres concerning
data processing. It has been utilized e.g. for the analysis of
whole-genome protein sequences [10], computer virus detec-
tion [11] and also in a wide variety of natural language pro-
cessing applications.

In our research the terms are network events reported by
the mobile terminal to the base station (in total 10 events listed
in Table 1). 1 The data used for sleeping cell detection is a K

by 10
n matrix containing the n-gram frequencies of each of

K individual users (or call), where n is the number of terms
in considered subsequences.

3.2. Dimensionality reduction and classification

The goal for data analysis here is first to identify abnormal
calls. As a next step this information is used for the detection
of the sleeping cell. To do that, one usually performs reduc-
tion of the dimensionality for the data and clusters the data in
low dimensional space. Here we performed standard princi-
pal component analysis for dimensionality reduction and ap-
plied the FindCBLOF [14] algorithm for clustering and out-

1RSRP = Reference Signal Received Power; RSRQ = Reference Signal
Received Quality; A2 = an event which triggers when the serving cell be-
comes worse than threshold; A3 = an event which triggers when a neighbor-
ing cell becomes an offset better than the serving cell.

Table 1. Network events triggering MDT log entry

PL PROBLEM - Physical Layer Problem [12].

RLF - Radio Link Failure [13].

RLF REESTABLISHMENT - Connection reestablish-
ment after RLF.

A2 RSRP ENTER - RSRP goes under A2 enter threshold.

A2 RSRP LEAVE - RSRP goes over A2 leave threshold.

A2 RSRQ ENTER - RSRQ goes over A2 enter threshold.

A3 RSRP - A3 event, according to spec.

HO COMMAND RCVD - handover command received
[13].

HO COMPLETE RCVD - handover complete received
[13].

HO TO VOID - handover is done to one of the cells in
outer tier.

lier detection part. The advantage of FindCBLOF is in its
ability to find local outliers based on the clustering solution
for training data.

3.3. Symmetry Analysis of 2-Gram Subsequences

Under symmetry we mean the following: if the first event of
a 2-gram is located in cell A and the second event is located
in cell B, we are interested in how many of those 2-grams
originate from A and how many originate from B. In simula-
tions, where the user movement is random, one expects any
2-grams to be somewhat balanced. Hence, the deviation from
learned balance is to be used as an indication of problem in a
particular cell.

4. SIMULATION ASSUMPTIONS AND GENERATED
DATA

Dynamic system level LTE simulator with step resolution of
one OFDM2 symbol has been used as a platform for data gen-
eration in this research. The simulator is designed in accor-
dance to specifications 3GPP E-UTRAN Release. 8 and be-
yond. Methodology for mapping link level SINR to system is
presented in [15].

Network scenario utilized in the simulations for this study
and shown on Fig. 1, is an extended version of 3GPP macro
case 1, described in [16]. Scenario setup is such that outer tier
of cells is used only for interference generation to make radio
link conditions more realistic. On the other hand 21 center
cells are utilized for statistical data collection. The main sim-
ulation parameters applied in this research are presented in
Table 2.

2OFDM - Orthogonal Frequency-Division Multiplexing
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Fig. 1. Macro 57 network scenario layout

Table 2. General Simulation Parameters

Parameter Value

Cellular layout Homogeneous Macro 57

Number of cells 21 active and 36 interfering

Inter-Site Distance 500 m

Link direction Downlink

Maximum BS TX power 46 dBm

Initial cell selection crite-
rion

Strongest RSRP value

Simulation length 142 s (2000000 steps)

Simulation resolution 1 time step = 71.43 µs

Max number of UEs/cell 20

UE velocity 30 km/h

Duration of calls Uniform 30 to 140 s

Traffic model Constant Bit Rate 256 kbps

Reference case Simulation without sleep-
ing cell

Problematic case Simulation with RACH
problem in cell 28

In this paper the sleeping cell was modelled through mal-
functioning of the Random Access Channel (RACH). RACH
is a channel used in connection establishment in the begin-
ning of a call when establishment procedure is initiated, dur-
ing handover to another cell or connection re-establishment
after handover failure or RLF.

By simulating LTE network operation we generate a per-
formance monitoring dataset using the principle of drive test
minimization reporting. This principle implies addition of
log entry by the mobile terminal to a global MDT log either
periodically or at occurrence of a specified network events,
presented in Table 1. Usually one sample includes values of
different performance indicators, time stamp and location fin-
gerprint. Depending on the type of the sleeping cell we might
need different amount of information from the log. As far as
in this research we are doing identification of random access

−1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

2nd component

3r
d 

co
m

po
ne

nt

 

 

Cluster 1 (large)
Cluster 2 (small)
Cluster 3 (large)
Cluster 4 (small)
Cluster 5 (small)
Cluster centroids

(a) FindCBLOF training

−1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

2nd component

3r
d 

co
m

po
ne

nt

 

 

Normal
Abnormal

(b) FindCBLOF testing

Fig. 2. FindCBLOF testing and training results

sleeping cells the required MDT data limits to event type and
location of this event occurrence. In more details the pro-
cedure of drive test minimization, variables of the MDT log
utilized for detection of other kinds of sleeping cells are pre-
sented in [7, 8].

5. RESULTS

5.1. Analysis of Abnormal User Calls

In accordance to our detection framework the first step is the
construction of n-gram subsequences as described in Sec-
tion 3.1. Using network events shown in Table 1, we chose
n = 2 for simplicity and generate the full set of 2-gram sub-
sequences.

Reference data were used for creation of a normal net-
work operation model. There were 264 users with sequences
longer than 20 event-triggered MDT log entries, while shorter
user sequences were filtered. On the basis of these reference
user sequences corresponding matrix of 2-gram occurrences
was constructed. After that same procedure was done with
the problematic data, Resulting occurrence matrix of 2-grams
was compared to the corresponding reference matrix in order
to find anomalous users.

Reference data were clustered to five groups, among
which there were two large and dense clusters (1 & 3) and
three small (clusters 2, 4 & 5), as shown in Fig. 2a. In prob-
lematic data, users were clustered into normal and abnormal
groups; red markers shown on Fig. 2b represent abnormal
user, while the rest belong to normal users’ group. Decision
whether a certain point is abnormal or not was based on the
value of CBLOF, where higher likelihood sample abnormality
corresponds to high score values. From Fig. 2a and Fig. 2b
it can be seen that points from the problematic dataset which
belong to the areas of compact clusters in training data are
marked as normal, while samples which are outside of dense
clusters or are in low density areas are clustered as abnormal.
In total 113 users were marked as abnormal and 205 users as
normal.

After having detected the abnormal users, their movement
can be traced by locating the events through dominance maps
like in [7]. As can be seen from Fig. 3, abnormal users tend to
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Fig. 3. Number of cell visits by abnormal users

be those who have visited the sleeping cell 28. Naturally due
to mobility they visit other cells as well. In these simulations
abnormal users on average camp in 6 different cells, while the
range varies from 3 to 11 cells. From the histogram on Fig.
3, it can be observed that 85 abnormal users (75.2%) have
visited cell 28. Next 8 most visited cells get from 38 to 55
visits from which 6 are neighbors of cell 28 (cells 24, 27, 29,
39, 41 & 44). On the basis of this information we can claim
that there is some anomalous behavior in the area of cell 28.

5.2. Analysis of Abnormal 2-Gram Sequences

Observation of the abnormal users gives only a rough idea
of possible problem in the cell of interest. For that reason
more detailed analysis of 2-gram subsequences of the abnor-
mal users’ calls needs to be employed. As further results
demonstrate, this approach gives more reliable indication of
problem existence. In particular, the knowledge of the most
descriptive 2-grams, meaning that over 50% of abnormal
users have this 2-gram occurred at least once, is taken into
account. Nine 2-grams met this condition and as an example
the characteristics of two of them are shown on Figs. 4 and 5.

Sequence “A2 RSRP LEAVE - A3 RSRP” is a common
2-gram all over the network and it should occur within all
users who are on the move. In the group of abnormal users
it exists for all users and the total number of occurrences is
869. However, in the dominance area of cell 28 this sequence
occurs far less frequently than for the rest of the network, as
it can be seen from Fig. 4a.

Sequence “HO COMMAND - A2 RSRP ENTER”, on the
other hand, is a direct consequence of Random Access prob-
lem. In normal network behavior “HO COMMAND” should
be followed by “HO COMPLETE”, but as it can be seen “A2
RSRP ENTER” appears instead. Thus this sequence happens
only in the area of problem (in total 126 times), as it can be
seen from Fig. 5a.

The described examples of abnormal 2-gram sequences
are the only ones among the nine selected 2-grams. To se-
lect these subsequences in automatic manner, thus being able
to detect sleeping cell, symmetry analysis based on their lo-
cations is employed, as described in Section 3.3. As it can
be seen from Figs. 4b and 5b there exists a clear unbalance
for each of these 2-grams in the dominance areas of cell 28
and also in its neighbor cells 29, 39, 41 and 44. Elsewhere
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Fig. 4. Characteristics of abnormal 2-gram sequence “A2
RSRP LEAVE - A3 RSRP”, which is a common 2-gram for
all the abnormal calls.
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Fig. 5. Characteristics of abnormal 2-gram sequence “HO
COMMAND - A2 RSRP ENTER”, which is a common 2-
gram for all the abnormal calls.

in the network these 2-grams are more or less in better bal-
ance. In fact, the sequence “A2 RSRP LEAVE - A3 RSRP”
completes in cell 28 more often than it starts from there and
more often than it ends in one of its neighbor cells. Regarding
“HO COMMAND - A2 RSRP ENTER” subsequence, it starts
more often from cell 28 ending up in one of its neighbors than
vice versa. Thus, the symmetry analysis demonstrates that the
behavior of cell 28 is clearly abnormal.

6. CONCLUSIONS

In this article advanced data mining framework for the net-
work performance monitoring automation was presented.
The considered problem of sleeping cell detection, is among
highly complex identification problems as far as there is no di-
rect alarm sent to the operator. A validation of the framework
was given in this setting using the random access malfunction
as an example for the sleeping cell root cause.

Suggested detection framework is based on such tech-
niques as n-gram analysis, association-based clustering algo-
rithm and dimensionality reduction. Altogether application of
these methods in the proposed way on top of MDT data leads
to a reliable detection of random access sleeping cell.
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R. Agustı́, M. Dı́az-guerra, J. Moreno, and D. Paul, “A
new methodology for RF failure detection in UMTS net-
works,” in Network Operations and Management Sym-
posium, NOMS 2008, IEEE, April 2008, pp. 718–721.

[4] C. M. Mueller, M. Kaschub, C. Blankenhorn, and
S. Wanke, “A cell outage detection algorithm using
neighbor cell list reports,” Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, 2008.

[5] M. Amirijoo, L. Jorguseski, T. Kürner, R. Litjens,
M. Neuland, L. C. Schmelz, and U. Türke, “Cell outage
management in LTE networks,” in Proceedings of the
6th international conference on Symposium on Wireless
Communication Systems, ser. ISWCS’09. IEEE Press,
2009, pp. 600–604.

[6] M. Amirijoo, L. Jorguseski, R. Litjens, and R. Nasci-
mento, “Effectiveness of cell outage compensation in
LTE networks,” in Consumer Communications and
Networking Conference (CCNC), 2011 IEEE, January
2011, pp. 642–647.

[7] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Aver-
buch, “Detection of sleeping cells in LTE networks us-
ing diffusion maps,” in Vehicular Technology Confer-
ence (VTC Spring), 2011 IEEE 73rd, May 2011, pp. 1–
5.

[8] J. Turkka, F. Chernogorov, K. Brigatti, T. Ristaniemi,
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