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ABSTRACT

Conventional spectrum sensing schemes can detect active trans-
mitters but not passive receivers, which have to be nevertheless pro-
tected from excessive interference whenever their bands are reused.
In this paper, a resource allocation scheme for underlay cognitive
radios is formulated, taking into account uncertainty of both propa-
gation gains and locations of incumbent receivers. The performance
of orthogonal access by secondary users is maximized under average
interference constraints, using channel statistics and maps that pin-
point areas where primary receivers are likely to reside. These maps
are tracked using a Bayesian approach, based on a 1-bit message sent
by the primary system whenever a communication disruption occurs
due to interference.

Index Terms— Cognitive radios, underlay access, resource al-
location, receiver localization, Lagrange dual, Bayesian estimator.

1. INTRODUCTION

In the underlay spectrum access paradigm, cognitive radios (CRs)
can reuse the frequency bands licensed to a primary user (PU)
network, provided PU-to-PU communications are not overly dis-
rupted [1]. However, assessing the interference that secondary users
(SUs) will inflict to PUs is not an easy task. For instance, spec-
trum sensing schemes can generally detect and localize active PU
sources [2–4], but not “passive” PU receivers, which may remain
silent for the majority of the time. But even if the locations of
these PUs were available, SU-to-PU channels can not be acquired
accurately, since PUs have generally no reason to exchange synchro-
nization and channel training signals with SUs.

The present paper advocates the notion of receiver map as a tool
for unveiling areas where PU receivers are located, with the objec-
tive of limiting the average interference inflicted to those locations.
These maps are tracked using a recursive Bayesian estimator, which
is based on a 1-bit message sent by the primary transmitter whenever
the instantaneous interference inflicted to at least one PU exceeds a
tolerable level.

Based on these maps, and assuming that the distribution of SU-
to-PU channels is available, a resource allocation (RA) scheme is
formulated, where the SU design variables are adapted to the time-
varying SU-to-SU channels, and the receiver map dynamics. Al-
though nonconvex, the formulated RA problem has zero duality gap,
and it is optimally solved using a Lagrange dual approach1 .

This work was supported by the QNRF grant NPRP 09-341-2-128.
1Notation: Eg[·] denotes expectation with respect to the random process

g; Pr{A} the probability of event A; x∗ the optimal value of x; 1{·} the
indicator function (1{x} = 1 if x is true, and zero otherwise); and, [x]ba the
projection of the scalar x onto [a, b]; that is, [x]ba := min{max{x, a}, b}.

1.1. Modeling and preliminaries

Consider an SU network in underlay access mode [1], with M
transmitter-receiver pairs (indexed by m) deployed over an area
A ⊂ R

2, sharing the spectrum with an incumbent PU system.
Based on the output of the spectrum sensing scheme [2–4], SUs
implement an adaptive RA to maximize their performance, while
protecting the PU system from excessive interference.

When spectral resources are shared in a hierarchical setup, the
CSI available to the SU network is generally heterogeneous; in fact,
the channel information that can be acquired for a link may be more
or less accurate depending on whether PUs or SUs are involved [5–
8]. Provided the spectrum is available for the SUs to transmit, the
SU-to-SU channels can be readily acquired by employing conven-
tional training-based channel estimators. For this reason, the state
of the SU-to-SU channels is considered perfectly known. The in-
stantaneous power gains {gm}M

m=1 of the SU links are given by the
squared magnitude of the small-scale fading realization scaled by the
link average signal-to-interferference-plus-noise ratio (SINR).

Suppose now that PU transmitters communicate with Q PU re-
ceivers located at coordinates {x(q) ∈ A}Q

q=1. Let hm,x(q) denote
the instantaneous channel gain between the SU transmitter m and the
PU receiver q. Due to a lack of full PU-SU cooperation [1], training-
based channel estimation cannot be employed in this case. Thus,
even though the average link gain (path loss coefficients) can be ob-
tained based on {x(q) ∈ A}Q

q=1, the instantaneous value of the pri-
mary link is uncertain due to random fading effects. Consequently,
SU m cannot assess precisely the interference pmhm,x(q) that it will
cause to PU q, where pm denotes the transmit-power. Hereafter,
it is assumed that only the distribution of hm,x(q) is known to the
SU network. Thus, given the maximum instantaneous interference
power Γ tolerable by the PUs, the SUs can determine the proba-
bility of interfering a PU located at x

(q), which is denoted here as
ιm,x(q) := Pr{pmhm,x(q) > Γ}.

However, conventional spectrum sensing schemes can detect
and localize active PU sources, and not “passive” PU receivers [2–4],
which remain silent most of the time (and whose ACK/NACK mes-
sages may not be easily detected). As a consequence, the locations
{x(q) ∈ A}Q

q=1 are generally unknown. Let z
(q)
x be a binary vari-

able taking the value 1 if a PU receiver q is located at x ∈ A,
and consider discretizing the PU coverage region into a set of grid
points G := {xg} representing potential locations for the PU re-
ceivers. In lieu of {z(q)

xg
}, the idea is to use the set of probabilities

β
(q)
x := Pr{z

(q)
x = 1}, ∀ x ∈ G, to identify areas where a PU

receiver q is more likely to reside, and limit the interference accord-
ingly. To this end, the following is assumed.
(as1) Processes {gm} and {hm,x(q)} are (mutually) independent.

(as2) Processes z
(q)
x and z

(v)
x , q 6= v, are independent.
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Assumption (as2) implies that each PU receiver has its own mo-
bility pattern, while (as1) presupposes that the uncertain component
of {hm,x(q)} is spatially uncorrelated. This is the case when e.g.,
spatial correlation of shadowing in negligible [4, 9], or path loss and
shadowing are accurately acquired as in, e.g. [2].

1.2. Relation to prior work

Power control for underlay CRs under channel uncertainty is con-
sidered in [10, 11], for the case of one PU link and one SU link.
Assuming that the distribution of the SU-to-PU link is available, the
instantaneous interference is limited by means of probabilistic con-
straints. Instantaneous and average interference constraints are com-
pared in [5] for the same setup. Extensions to multiple SU links can
be found in, e.g., [6, 9]. However, assuming that the statistics of the
SU-to-PU links are known, tacitly implies that the PU receiver loca-
tions are known and are used to compute path loss coefficients (i.e.,
the mean of the channel gains). The distribution of SU-to-PU links
is estimated online in [8], based on channel measurements.

Once the locations of PU transmitters are acquired through sens-
ing, a prudent way to protect the PU system is to estimate the PU
coverage region [2, 4], and ensure that the interference does not ex-
ceed a prescribed level at any point of the boundary of the PU cov-
erage region [4, 7]. However, this solution may lead to sub-optimal
operation of the SU network, especially if the PU receivers are actu-
ally located far from the PU region boundary.

The contribution of the present paper is twofold: i) a novel RA
scheme is formulated, where the SU transmissions are scheduled and
their powers are computed based on the secondary CSI g := {gm}

and statistical primary state information (PSI) s := {ιm,x}∪{β
(q)
x },

which models uncertainties of both channels and PU locations (Sec-
tion 2); and, ii) a recursive Bayesian estimator is developed to opti-
mally estimate the receiver maps {β(q)

x } based on a single-bit mes-
sage received when a PU is interfered (Section 3).

2. RA UNDER PRIMARY STATE UNCERTAINTY

To simplify notation and exposition, suppose that the SU system op-
erates over a single primary band. Define a binary scheduling vari-
able wm taking the value 1 if the mth SU is scheduled to trans-
mit to its intended receiver, and 0 otherwise. Secondary transmis-
sions are assumed orthogonal and, thus,

P

m wm(g, s) ≤ 1. When
P

m wm(g, s) = 0, no user transmits either because the quality
of all SU-to-SU channels is poor, or, excessive interference is in-
flicted to the PU. Under bit error rate or capacity constraints, in-
stantaneous rate and transmit power variables are coupled, and this
rate-power coupling is modeled here using Shannon’s capacity for-
mula rm(gm, pm) = log(1+ gmpm/κm), where κm represents the
coding scheme-dependent SINR gap [12]. Channels in g vary across
time due to fading. Thus, the SU network operates in a time-slotted
setup, where the duration of each slot (indexed by t) corresponds to
the coherence time of the small-scale fading process.

Let p̄m and r̄m denote the average power and rate transmitted by
SU m. These can be expressed as p̄m(x) := Eg,s[wm(g, s)pm(g, s)]
and r̄m(x) := Eg,s[wm(g, s)rm(gm, pm(g, s))], where y :=
{wm(g, s), pm(g, s),∀m,g, s}. The metric to be optimized will
be designed to encourage high average transmission rates, while
discouraging high average power consumptions. To this end, let
Um(r̄m) denote a concave, non-decreasing, utility function quanti-
fying the reward associated with the rate r̄m, and Jm(p̄m) denote a
convex, increasing, function representing the cost incurred by using

the average transmit-power of p̄m. Further, assume that Um(r̄m)
and Jm(p̄m) are differentiable. The metric to be optimized is then

f({r̄m}, {p̄m}) :=
X

m

Um(r̄m) − Jm(p̄m) . (1)

To account for the interference caused to the PU system [1, 13],
consider first the binary random variable

i(q)({pm}, s) := max
x∈G

z(q)
x 1{

P

m
wm(g,s)pm(g,s)h

m,x
(q) >Γ}, (2)

which equals 1 if the PU receiver q is interfered. Further, de-
fine the binary random variable i({pm}, s) := 1 −

QQ
q=1(1 −

i(q)({pm}, s)), which is 1 if one or more PU receivers are in-
terfered. Since wm(g, s) ∈ {0, 1} and at most one SU trans-
mits per time slot, i(g, s) can be rewritten as i({pm(g, s)}, s) =
P

m wm(g, s) im(pm(g, s), s), where

im(pm(g, s), s):=1−

Q
Y

q=1

„

1−max
x∈G

z(q)
x 1{pm(g,s)h

m,x
(q) >Γ}

«

(3)

depends only on the transmit-power of SU m. Let imax ∈ (0, 1)
denote the maximum long-term probability (rate) of interference.
Then, the following constraint must holdEg,s

h

X

m
wm(g, s) im(pm(g, s), s)

i

≤ imax . (4)

Based on (1) and (4), the optimal RA subject to (“s. to”) inter-
ference constraints is obtained as the solution of:

u∗ := max
{p̄m≥0},{r̄m≥0},y

M
X

m=1

Um(r̄m)−Jm(p̄m) (5a)

s.to : Eg,s [wm(g, s)pm(g, s)] ≤ p̄m (5b)Eg,s [wm(g, s)rm(pm(g, s))] ≥ r̄m (5c)Eg,s

h

X

m
wm(g, s) im(pm(g, s), s)

i

≤ imax (5d)

wm(g, s) ∈ {0, 1}, and
X

m
wm(g, s) ≤ 1 (5e)

where the constraints (5b) and (5c) have been relaxed from equali-
ties to inequalities without loss of optimality, and the non negativity
of {pm} is left implicit. Problem (5) is nonconvex because i) {wm}
are binary variables; ii) the monomials wmpm and wmrm(pm) are
not jointly convex in wm and pm; and, iii) the interference con-
straint (5d) is nonconvex. Nevertheless, an optimal solution can be
obtained by following the next three steps.

First, constraints wm(g, s) ∈ {0, 1} can be relaxed as wm(g, s) ∈
[0, 1]. Next, to cope with the non convexity of wmpm and wmrm(pm),
consider introducing the dummy variables p̃m := wmpm. Despite
these changes, it can be shown that the solution of the reformulated
problem is the same than that of (5); see e.g., [14] for details. Al-
though the non-convexity of (5d) cannot be easily addressed, it turns
out that it is possible to leverage the results of [15, Thm. 1] to show
that the duality gap is zero. Consequently, a Lagrange dual approach
can be adopted without loss of optimality.

Consider then dualizing the average constraints (5b), (5c)
and (5d), and let {πm}, {ρm} and θ denote the Lagrange multi-
pliers associated with (5b), (5c) and (5d), respectively. Exploiting
the separability of the resultant Lagrangian across SU links, as
well as the per-fading state separability [15, Thm. 4], the optimal
variables {p̄∗

m}, {r̄∗m}, {w∗
m} and {p∗

m} can be found as follows.
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- Average rate and power. With {π∗
m}, {ρ∗

m} denoting the optimal
dual variables, p̄∗

m, r̄∗m are obtained as

p̄∗
m := arg min

pm≥0
Jm(p̄m) − π∗

mp̄m (6a)

r̄∗m := arg max
rm≥0

Um(r̄m) − ρ∗
mr̄m . (6b)

These are scalar convex optimization problems that can be effi-
ciently solved. Further, when functions {Um(·)} and {Jm(·)}
are differentiable with invertible derivatives, it follows that p̄m =
ˆ

(J̇m)−1(π∗
m)

˜

+
and r̄m =

ˆ

(U̇m)−1(ρ∗
m)

˜

+
, where (U̇m)−1(·)

and (J̇m)−1(·) are the inverse of the derivative of Um(·) and Jm(·).
- Per-fading state scheduling and powers. Defining the function

ϕm(gm[t], p) := ρ∗
mrm(gm[t], p)−π∗

mp−θ∗Es[t] [im(p, s[t])] (6c)

the optimal w∗
m(g, s) and p∗

m(g, s) for all m and g, s are given by

p∗
m[t] :=

ˆ

arg max
p

ϕm(gm[t], p))
˜∞

0
(6d)

w∗
m[t] := 1{(m=arg maxn ϕn((p∗

n
[t]))) and (ϕm(p∗

n
[t])>0)}. (6e)

Key to understanding the solution of (5) is the definition of ϕm(·).
Intuitively, (6c) can be interpreted as an instantaneous user-quality
indicator where the transmit rate is rewarded with a price ρ∗

m, the
transmit power is penalized with a price π∗

m, and the interferenceEs[t] [im(p, s[t])] is penalized with a price θ∗ [8]. Analytically,
ϕm(x) represents the contribution of user m to the Lagrangian of
(5), when pm[t] = x and wm[t] = 1. Using (as1)–(as2), the in-
terference term in (6c) can be simplified as Es[t] [im(p, s[t])] =

1 −
QQ

q=1(1 −
P

x∈G ιm,xβ
(q)
x ). Further, if hm,x is Rayleigh-

distributed, it follows that ιm,x = e−Γ/(pmγm,x) with γm,x denot-
ing the path loss between SU m and grid point x [12]. In any case,
(6d) turns out to be generally nonconvex; however, since only one
single scalar variable (the transmit power p) is involved, efficient
methods can be employed to find p∗

m[t].

2.1. Estimating the optimum Lagrange multipliers

Finding the optimal multipliers {ρ∗
m, π∗

m, θ∗} may be computational
challenging because: a) they have to be found numerically by aver-
aging over all possible realizations of g and s; and, b) if either the
channel statistics or the number of PUs/SUs change, {π∗

m, ρ∗
m, θ∗}

must be recomputed. An alternative consists in resorting to stochas-
tic approximation iterations [16,17], whose goal is to obtain samples
{πm[t]}, {ρm[t]} and θ[t], t = 1, 2, . . . that are nevertheless suffi-
ciently close to the optimal dual variables {π∗

m, ρ∗
m, θ∗}. Specifi-

cally, with µπ > 0, µρ > 0 and µθ > 0 denoting the stepsizes, the
following iterations yield the desired multipliers ∀t:

πm[t + 1] = [πm[t] − µπ(p̄∗
m(πm[t] − w∗

m[t]p∗
m[t]))]

∞
0 (7)

ρm[t + 1] = [ρm[t] + µρ(r̄
∗
m − w∗

m[t]rm(hm[t], p∗
m[t]))]

∞
0 (8)

θ[t + 1] = [θ[t] − µθ(i
max − i[t])]

∞
0 . (9)

Notice that besides being computationally affordable, these tech-
niques allow one to cope with non-stationary channels and PU
occupancies. Updates (7)-(9) form an unbiased stochastic sub-
gradient of the dual function of (5); see e.g., [18]. Using also
that the updates in (7)-(9) are bounded, it can be shown that
the sample average of the stochastic RA i) is feasible; and, ii)
it incurs minimal performance loss relative to the optimal solu-
tion of (5). Rigorously stated, define µ := max{µπ, µθ , µϑ};

ū[t] := 1
t

P

m

Pt
l=1 Um(w∗

m[l]rm(p∗
m[l])) − Jm(p∗

m[l]); and,
ī[t] := 1

t

Pt
l=1 i[l]. Then, it holds with probability one that as

t → ∞: i) ī[t] = imax; and, ii) ū[t] ≥ u∗ − δ(µ), where δ(µ) → 0
as µ → 0 (see, e.g. [17]).

3. RECEIVER MAP ESTIMATION

The SU network relies on the interference probabilities {ιm,x} and
PU receivers’ spatial distribution {β

(q)
x } to schedule SU transmis-

sions and limit their powers based on the expected probability of
interference Es[t] [im(p, s[t])] [cf. (6c)]. Once the virtual grid G
is chosen, {ιm,x} can be computed as a function of the transmit-
powers pm. The aim here is to develop an online Bayesian estimator
for {β(q)

x } based on the following assumptions.
(as3) The PU system notifies the SUs if disruptive interference oc-
curred to one or more PU receivers.
(as4) An estimate (or an upper bound) of the number of PU receivers
Q is available.
A one-bit message i[t] = 1 is sufficient to notify the SU system that
the event p∗

m∗hm∗,x(q) > Γ occurred to at least one PU receiver;
thus, (as3) entails just a minimal PU-SU message passing. This goes
along the lines of [9,19] (see also references therein), where the PU’s
ARQs are assumed to be either exchanged or eavesdropped by the
SU transceivers. Moreover, Section 4 will illustrate that (as4) is not
very restrictive, since just an upper-bound on Q suffices to carry out
the localization task. More sophisticated schemes that jointly esti-
mate and track Q and {β

(q)
x [t]} will be the subject of future research.

To account for PU mobility, z
(q)
x [t] is modeled as a first-order

(spatiotemporal) Markov process characterized by the transition
probabilities φ

(q)
x,x′ [t] := Pr{z

(q)
x [t] = 1|z

(q)
x′ [t − 1] = 1}. Such

transition probabilities are assumed to be non-zero only if x
′ ∈ Gx,

where the set Gx contains x and its neighbors. Collect in the set
It := {i[τ ], τ = 1, . . . , t} the interference notifications up to time
slot t, and define further the sets Ht := It ∪ {p∗

m[τ ], w∗
m[τ ], τ =

1, . . . , t} and H̃t := Ht−1 ∪ {p∗
m[t], w∗

m[t],∀m}. Since the el-
ements of It constitute the observed states of a Hidden Markov
Model (HMM), a recursive Bayesian estimator can be implemented
to acquire (and track) the posterior probability mass function of
{z

(q)
x }. To this end, let β

(q)
x [t|t − 1] := Pr{z

(q)
x [t] = 1|Ht−1} and

β
(q)
x [t|t] := Pr{z

(q)
x [t] = 1|Ht} denote the instantaneous beliefs

given Ht−1 and Ht, respectively. Thus, the receiver maps can be
recursively updated by performing the following steps per grid point
x and PU receiver q (see e.g., [20]).
Prediction step:

β
(q)
x [t|t − 1] =

P

x′∈Gx

φ
(q)
x,x′ [t]β

(q)
x [t − 1|t − 1] . (10)

Correction step:

β(q)
x [t|t] =

Pr{i[t] = o|z
(q)
x [t] = 1,Ht−1}β

(q)
x [t|t − 1]

Pr{i[t] = o|H̃t}
(11)

where o ∈ {0, 1} denotes the value observed for i[t]. To sim-
plify (11), notice that z

(q)
x [t] = 1 implies that z

(q)

x′ [t] = 0 for the

grid points x
′ ∈ G\{x}. Thus, it follows that Pr{i[t] = 1|z

(q)
x [t] =

1,Ht−1} is given by

Pr{i(q)[t] = 1|z(q)
x [t] = 1,Ht−1} = ιm,x[t] . (12)

Clearly, Pr{i(q)[t] = 0|z
(q)
x [t] = 1,Ht−1} = 1 − ιm,x[t]. Fur-

thermore, using (as1), (as2), and (as4), the denominator of (11) is
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Fig. 1. (a) Scenario. (b) Receiver map at t = 100, purple dots represent the actual PU locations. (c) Map at t = 2000. (d) Map at t = 5000.

simplified as

Pr{i[t] = 1|Ht−1} = 1 −

Q
Y

q=1

`

1 −
X

x∈G

ιm,x[t]β(q)
x [t|t − 1]

´

(13)

while Pr{i[t] = 0|Ht−1} is computed in the obvious way. With a
slight increase on complexity, the correction step can be modified to
account for errors in i[t].

Thus, the proposed joint RA and map estimation algorithm
amounts to implementing the following steps at each time slot t.

[S1] Perform the prediction step (10).
[S2] Based on {β

(q)
x [t|t − 1]}, find {r̄m[t], p̄m[t], wm[t], pm[t]}

via (6), where the multipliers are obtained using (7)-(9) and the termEs[t] [im(p, s[t])] in (6c) is replaced with the beliefEs[t][im(p, s[t])

|Ht−1] = 1 −
QQ

q=1(1 −
P

x∈G ιm,x(p)β
(q)
x [t|t − 1]).

[S3] Acquire i[t], and run the correction step (11).

4. NUMERICAL RESULTS

Consider the scenario depicted in Fig. 1(a), where M = 10 SU
transmitters are deployed in a 300 × 300 m area. A PU source
(marked with a purple triangle) communicates with 2 PU receivers
(marked with purple circles). The first PU receiver is: located at
x

(1) = (x = 190, y = 170); static; and served by the PU source
during the entire simulation interval t ∈ [1, 8000]. The second
PU is: located at x

(2) = (90, 140), mobile, with φ
(q)

x,x′ [t] = 0.05

∀x′ ∈ Gx; and communicates with the source only during the inter-
val [1, 4000]. The PU system is protected by setting Γ = −70 dB
[cf. (2)] and imax = 0.05 [cf. (4)].

From the sensing phase, the SU system acquires an estimate of
the location of the PU source, and of its coverage region (see e.g., [2–
4]). The PU coverage region is discretized using uniformly spaced
grid points, each one covering an area of 8 × 8 m. The multipliers
are initialized as ρm[0] = 0.1, πm[0] = 0.03, and θ[0] = 20, while
the step sizes are set to µρ = 0.03, µπ = 0.005, and µθ = 0.2. To
assess robustness of the proposed framework to model mismatches,
it is assumed that: i) the SUs have imperfect knowledge of the PU
transition probabilities, which are supposed to be φ̂

(q)
x,x′ = 0.01 for

both receivers; and, ii) the presumed number of PUs is always Q =
2, even in the interval [4000, 8000], where the second PU receiver
is not active. The per-SU utilities are set to Um(r̄m) = log(r̄m)
and Jm(p̄m) = p̄2

m/4. Finally, km = 1 for all m, the path loss
obeys the model γm,x = ‖xm − x‖−3.5

2 , and the small-scale fading
is Rayleigh distributed.
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Fig. 2. Convergence and performance of the RA.

Pictorially, performance of the receiver localization scheme can
be assessed through the maps shown in Figs. 1(b), (c) and (d). The
value (color) of a point in the map represents the sum of the beliefs
P

q β
(q)
x [t|t] at the corresponding grid point x [cf. (11)]. The chro-

matic scale uses blue for low (belief) values and red for high ones.
Each of the maps corresponds to a different time instant, namely
t = 200, t = 2000 and t = 5000. A uniform distribution across
the east and the west halves of the region is used for β

(1)
x [0|0] and

β
(2)
x [0|0], respectively. It can be seen that after 100 time slots it

is already possible to unveil the areas where the PU receivers are
likely to reside. Clearly, as time goes by, the localization accuracy
improves as corroborated by Fig. 1(c). Recall that only one PU re-
ceiver is served by the PU source when t > 4000. Indeed, as shown
in Fig. 1(d), the receiver map peaks at only the actual location of the
PU receiver. Furthermore, the numerical results reveal that the two
beliefs β

(1)
x [t|t] and β

(2)
x [t|t] are approximately the same for all x,

thus indicating that just an upper bound on Q is sufficient.
In Fig. 2, convergence and feasibility of the RA schemes are

tested. The upper subplot demonstrates that the running average ī[t]
approaches its limit imax around t ≈ 3500; then, after a transient
period that begins at t = 4000, it converges again around t ≈ 5000.
The running average of the sum rate (1/t)

P

m

P

τ rm[τ ] is de-
picted in the lower subplot of Fig. 2. The rates achieved by the pro-
posed scheme are compared with those obtained by: S1) a scheme
where the beliefs are set to 1 for grid points in the boundary of the
PU coverage region [4, 7], and, S2) a scheme where perfect PSI (in-
cluding that of SU-to-PU instantaneous links) is available. The re-
sults illustrate that our scheme clearly outperforms S1, motivating
the additional complexity required to implement the map estimator.

Additional numerical results, along with RA schemes robust to
interference notification errors are reported in [21].
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