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ABSTRACT

We propose a decomposition framework for the distributed optimiza-
tion of general nonconvex sum-utility functions arising in the design
of wireless multi-user interfering systems. Our main contributions
are: i) the development of the first provably convergent Jacobi best-
response algorithm, where all users simultaneously solve a suitably
convexified version of the original sum-utility optimization prob-
lem; ii) the derivation of a general dynamic pricing mechanism that
provides a unified view of existing pricing schemes that are based,
instead, on heuristics; and iii) a framework that can be easily par-
ticularized to well-known applications, giving rise to practical algo-
rithms that outperform all existing ad-hoc methods proposed for very
specific problems. Our framework contains as special cases well-
known gradient algorithms for nonconvex sum-utility problems, and
many block-coordinate descents schemes for convex functions.

Index Terms— Nonconvex social problems, parallel & distributed
optimization, successive convex approximation.

1. INTRODUCTION

Wireless networks are composed of users that may have different
objectives and generate interference, when no multiplexing scheme
is imposed to regulate the transmissions; examples are peer-to-peer
networks, cognitive radio systems, and ad-hoc networks. A usual
and convenient way of designing such multiuser systems is by opti-
mizing the “social function”, i.e. the (weighted) sum of the users’
objective functions. When the social problem is a sum-separable
convex programming, many distributed algorithms have been pro-
posed; see, e.g., [1, 2, 3] and references therein. In this paper we ad-
dress the more frequent and difficult case in which the social function
is nonconvex. It is well known that the problem of finding a global
minimum of the social function is, in general, an NP hard problem
[4], and even centralized solution methods are in jeopardy. As a con-
sequence, most current research efforts have been focused on find-
ing efficiently high quality suboptimal solutions via low complexity
(possibly) distributed algorithms. Several sequential decomposition
algorithms have been proposed in the literature, e.g., [5, 6, 7, 8, 9, 10]
wherein only one user at a time is allowed to update his optimization
variables; a fact that in large scale networks may lead to excessive
communication overhead and slow convergence.

Our aim in this paper is instead to devise more appealing simul-
taneous distributed best-response-like algorithms for general non-
convex sum-utility problems, where all users can update their vari-
ables at the same time. The design of such algorithms is difficult,
as witnessed by the scarcity of results in the literature. Besides the
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application of the classical gradient projection algorithm to the sum-
rate maximization problem over MIMO ICs [11], parallel iterative
algorithms (with message passing) were proposed in [12, 13] and
[14] for DSL/ad-hoc SISO networks and MIMO broadcast inter-
fering channels, respectively. Unfortunately, the gradient schemes
[11] suffer from slow convergence; [12, 13] hinge crucially on the
special log-structure of the users’ rate functions; and [14] is based
on the connection with a weighted MMSE problem. This makes
[12, 13, 14] not applicable to different sum-utility problems.

Building on the idea first introduced in [15], in this paper, we
propose a new decomposition method that: i) converges to stationary
points of a large class of social problems, encompassing most sum-
utility functions of practical interest (including functions of complex
variables); ii) decomposes well across the users, resulting in the par-
allel solution of convex subproblems, one for each user; iii) contains
as special case the gradient algorithms for nonconvex sum-utility
problems, and many block-coordinate descent schemes for convex
functions. Moreover, it can be easily particularized to well-known
applications, such as [5, 6, 8, 9, 13], giving rise in a unified way to
distributed simultaneous algorithms that outperform existing, spe-
cialized, methods both theoretically and numerically. We remark
that while we follow the seminal ideas put forward in [15], in this
paper, we i) consider a much wider class of social-problems and al-
gorithms, including [15] as special cases, ii) discuss in detail the case
of functions of complex variables, and iii) compare numerically to
state-of-the-art alternative methods.

On the one hand, our approach draws on the Successive Convex
Approximation (SCA) paradigm, but relaxes the key requirement
that the convex approximation must be a tight global upper bound of
the social function, as instead in [10, 12, 16]. On the other hand, the
new method also sheds new light on pricing mechanism widely used
in the literature: indeed, our method can be viewed as a dynamic
pricing algorithm where the pricing rule derives from a deep un-
derstanding of the problem characteristics and is not obtained on an
ad-hoc basis, as in [5, 6, 17]. We conclude this review by mentioning
the recent work [18], where the authors, developing ideas contained
in [10, 14], proposed parallel SCA-based schemes that are applicable
(only) to sum-utility problems for which a connection with a MMSE
formulation can be established. Note that [10, 18], which share some
ideas with our approach, appeared after [15].

2. MAIN RESULTS

We consider the design of a multiuser system composed by I cou-
pled users I , {1, . . . , I}. Each user i makes decisions on his
own ni-dimensional real strategy vector xi, which belongs to the
feasible set Ki; the vector variables of the other users is denoted
by x−i , (xj)j 6=i ∈ K−i ,

∏
j 6=i
Kj ; the users’ strategy profile is

x=(xi)
I
i=1, and the joint strategy set of the users isK ,

∏
j∈I Kj .
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The system design is formulated as:

minimize
x

U(x) ,
∑

i∈If

fi(x)

subject to xi ∈ Ki, ∀i ∈ I,

(1)

with If , {1, . . . , If}. Observe that, in principle, the set If of
objective functions is different from the set I of users; we show
shortly how to explore this extra degree of freedom to good effect.
Of course, (1) contains the most common case where there is exactly
one function for each user, i.e. I = If .
Assumptions. We make the following blanket assumptions:
A1) Each Ki is closed and convex;
A2) Each fi is continuously differentiable on K;
A3) U(x) has Lipschitz gradient on K, with constant L∇;
A4) The lower level set L(x0) , {x ∈ K : U(x) ≤ U(x0)} of the
social function U(x) is compact for some x0 ∈ K.

The assumptions above are quite standard and are satisfied by a
large class of problems of practical interest. In particular, condition
A4) guarantees that the social problem has a solution, even when the
feasible K is not bounded; if K is bounded A4) is trivially satisfied.

At the basis of our decomposition technique there is the attempt
to properly exploit any degree of convexity that might be present in
the problem (recall that we did not make any convexity assumption
so far). To capture this idea, for each user i ∈ I, let Si ⊆ If be
the set of indices of all the functions fj(xi,x−i) that are convex in
xi ∈ Ki, for any x−i ∈ K−i:

Si , {j ∈ If : fj(•,x−i) is convex on Ki,∀x−i ∈ K−i} , (2)

and let Ci ⊆ Si be a given subset of Si. Note that we allow the
possibility that Si = ∅, even if we “hope” that Si 6= ∅, and actually
this latter case occurs in most of the applications of interest, see Sec.
4. For each user i ∈ I, we can introduce the following convex
approximation of U(x) at xn ∈ K:

f̃Ci
(xi;x

n) ,
∑

j∈Ci

fj(xi, x
n
−i) + πCi

(xn)T (xi − x
n
i )

+
τi
2

(xi − x
n
i )

T
Hi(x

n) (xi − x
n
i ) (3)

where πCi
(xn) ,

∑
j∈C−i

∇xi
fj(x)|x=xn , with C−i , If\Ci

being the complement of Ci; τi > 0 is a given positive constant; and
Hi(x

n) are ni × ni uniformly positive definite matrices (possibly
dependent on xn), i.e. Hi(x

n) − cHi
I � 0, for some cHi

> 0.
Associated with each f̃Ci

(xi;x
n), we can introduce the following

“best response” map that, under A1)-A4), is well-defined:

x̂Ci
(xn, τi) , argmin

xi∈Ki

f̃Ci
(xi;x

n). (4)

Let x̂C(x
n, τ ) , (x̂Ci

(xn, τi))
I

i=1
be the overall best-response map,

with τ , (τi)
I
i=1. We can now introduce our decomposition scheme,

Algorithm 1, whose convergence is stated in Theorem 1; we omit the
proof because of the space limitation; see [19].

Algorithm 1: Exact Jacobi SCA Algorithm

Data : τ > 0, {γn} > 0, x0 ∈ K.
(S.0) : Set n = 0;
(S.1) : If xn satisfies a termination criterion: STOP;
(S.2) : For all i ∈ I, compute x̂Ci

(xn, τ ) according to (4);
(S.3) : Set xn+1 , xn + γn (x̂ (xn, τ )− xn);
(S.4) : n← n+ 1, and go to (S.1).

Theorem 1 Given the social problem (1) under A1)-A4), suppose
that one of the two following conditions is satisfied
(a) For each i, Hi(x)− cHi

I � 0 for all x ∈ K and some cHi
> 0,

and the sequence {γn} and τ > 0 are chosen so that

0 < inf
n

γn ≤ sup
n

γn ≤ γmax ≤ 1 and 2 cτ ≥ γmaxL∇U , (5)

where cτ , mini∈I{τi·cHi
+minx−i∈K−i

cfCi
(x−i)} and cfCi

(x−i)

is the constant of strong convexity of
∑

j∈Ci
fj(•,x−i) on Ki.1

(b) For each i, Hi(x)− cHi
I � 0 for all x ∈ K and some cHi

> 0,
τ > 0, and the sequence {γn} is chosen so that

γn ∈ (0, 1], γn → 0, and
∑

n

γn = +∞. (6)

Then, either Algorithm 1 converges in a finite number of iterations
to a stationary solution of (1) or every limit point of the sequence
{xn}∞n=1 (at least one such points exists) is a stationary solution of
(1). Moreover, none of such points is a local maximum of U .

Main features of Algorithm 1. The algorithm implements a novel
distributed SCA decomposition: all the users solve in parallel the se-
quence of decoupled strongly convex optimization problems (4). It is
expected to perform better than classical gradient-based schemes at
the cost of no extra signaling, because the convexity of the objective
functions, if any, is better exploited. It is guaranteed to converge un-
der the weakest assumptions available in the literature while offering
some flexibility in the choice of the free parameters [see conditions
a) or b) of Theorem 1]. This degree of freedom can be exploited,
e.g., to achieve the desired tradeoff between signaling and conver-
gence speed, as discussed next. Note that inexact versions of Algo-
rithm 1 are possible [where each user need not solve (4) exactly], but
we do not discuss them here for lack of space; see [19].

On the choice of the free parameters. Convergence of Algorithm
1 is guaranteed either using a constant step-size rule [cf. (5)] or
a diminishing step-size rule [cf. (6)]. Moreover, different feasible
choices of {Ci} are possible for a given social function, resulting in
different best-response functions and signaling among the users.
1) Constant step-size. In this case, γn = γ ≤ γmax for all n, where
γmax ∈ (0, 1] is chosen together with τ > 0 and (Hi(y))

I
i=1 so

that the condition 2 cτ ≥ γmaxL∇U is satisfied. This can be done
in several ways. A case worth mentioning is: γ = γmax = 1 for all
n, Hi(y) = I for all i ∈ I, and τ > 0 large enough so that 2 cτ ≥
L∇U . This choice leads to the more classical proximal-Jacobi best-
response scheme: at each iteration n, xn+1

i = x̂i (x
n, τ ) , ∀i ∈ I.

To the best of our knowledge, this algorithm along with its conver-
gence conditions [Theorem 1a)] is new in the optimization literature;
indeed classic best-response nonlinear Jacobi schemes require much
stronger (sufficient) conditions to converge (implying contraction)
[3, Ch. 3.3.5]. Note that the choice of the τi’s to guarantee conver-
gence [i.e., 2 cτ ≥ L∇U ] can be done locally by each user with no
signaling exchange, if L∇U is known.
2) Variable step-size. In scenarios where L∇U is not available, one
can use the diminishing step-size rule (6), whose implementation
does not require any information on the system parameters. More-
over, under a diminishing step-size rule, convergence is guaranteed
for any choice of τ > 0 [if the function

∑
j∈Ci

fj(•,x−i) are strongly
convex for any x−i ∈ K−i, we can also set τi = 0] and Hi(x) −
cHi

I � 0, which provides a further degree of flexibility. An exam-
ple of step-size rule satisfying (6) is: given γ0 = 1, let

γn = γn−1
(
1− ǫ γn−1

)
, n = 1, . . . , (7)

1If
∑

j∈Ci
fj(•,x−i) is convex but not strongly convex, cfCi

= 0.
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where ǫ ∈ (0, 1) is a given constant; see [19] for others rules.
Another issue to discuss is the choice of the free positive definite

matrices Hi(x
n). Mimicking (quasi-)Newton-like schemes [20], a

possible choice is to consider a proper (diagonal) uniformly positive
definite “approximation” of the Hessian matrix∇2

xi
U(xn). The ex-

act expression to consider depends on the amount of signaling and
computational power available to calculate such a Hi(x

n), and thus
varies with the specific problem under considerations [19].
3) On the choice of Ci’s. Note that more than one feasible choice of
{Ci} is in general possible for a given social function. Some illus-
trative examples are discussed next.
Example #1−(Proximal) gradient algorithms: If each Ci = ∅ and
I = If , x̂Ci

(xn, τi) reduces to the gradient response (possibly with
a proximal regularization). Therefore (exact and inexact) gradient
algorithms along with their convergence conditions are special cases
of our framework. Note that if Si = ∅ for every i this is the only
possible choice. And indeed, if no convexity whatsoever is present in
U our approach reduces to a form of gradient method. On the other
hand, as soon as at least one Si 6= ∅ we depart from the gradient
method and exploit in the best possible way the available convexity.
Example #2−Algorithms in [15]: Suppose that I = If , and each
Si = {i} (implying that fi(•,x−i) is convex on Ki for any x−i ∈
K−i). By taking each Ci = {i}, we obtain the algorithms in [15].
Example #3−(Proximal) Jacobi algorithms for a single jointly con-
vex function: Suppose that the social function is a single (jointly)
convex function f(x1, . . . ,xI) on K =

∏
iKi. Of course, this op-

timization problem is a special case of our setting, with Ci ≡ If =
{1} for all i ∈ I and f1(x) = f(x). Then, (4) reduces to

x̂Ci
(xn, τi) , argmin

xi∈Ki

f(xi,x
n
−i) +

τi
2
‖xi − x

n
i ‖

2 , (8)

where we set Hi(x
n) = I. Algorithm 1 based on such a x̂Ci

(xn, τi)
reads as an exact (proximal) block-Jacobi scheme converging to the
global minima of f(x1, . . . ,xI) over K. To the best of our knowl-
edge, this is a new algorithm in the literature; moreover its conver-
gence conditions enlarge current ones; see, e.g., [3, Sec. 3.2.4].

Other special cases of our framework (such as the application to
D.C. programming) are discussed in [19].

3. THE COMPLEX CASE

In this section we show how to extend our framework to sum-utility
problems where the users’ optimization variables are complex ma-
trices. This will allow us to deal with the design of MIMO multiuser
systems. Let us consider the following sum-utility optimization:

minimize
X1,...,XI

U(X) ,
∑

i∈If

fi(Xi, X−i)

subject to Xi ∈ Ki, ∀i ∈ I,

(9)

where now Xi ∈ C
ni×mi , Ki ⊆ C

ni×mi , and fi : K → R. We
study (9) under the same assumptions A1)-A4) stated for the real
case, where in A2) the differentiability condition is now replaced by
the R-differentiability (see, e.g., [21, 22]), and in A3) U(X) is re-
quired to have Lipschitz conjugate-gradient ∇X∗U(X) on K, with
constant LC

∇U , where X∗ is the conjugate of X.
At the basis of the proposed decomposition techniques for (9)

there is the (second order) Taylor expansion of a continuously R-
differentiable function f : Cn×m → R [23]:

f(X+∆X)− f(X) ≈ 2 〈∆X, ∇X∗f(X)〉

+
1

2
vec([∆X,∆X∗])HHXX∗f(X) vec([∆X,∆X∗]),

where 〈A, B〉 , tr(AHB), vec(•) denotes the “vec” operator, and
HXX∗f(X) is the so-called augmented Hessian of f ,

HXX∗f(X) ,
∂

∂vec([X,X∗])T

(
∂f(X)

∂vec([X∗,X])T

)T

. (10)

In [23], we proved that HXX∗f(X) plays the role of the Hessian
matrix for functions of real variables. In particular, f is strongly
convex on C

n×m if and only if there exists a cfC > 0, the constant
of strong convexity, such that

vec([Y,Y∗])HHXX∗f(X) vec([Y,Y∗]) ≥ cfC ‖Y‖
2

F
, (11)

for all X ∈ C
n×m and Y ∈ C

n×m, where ‖•‖
F

denotes the Frobe-
nius norm. When (11) holds, we say thatHXX∗f(X) is augmented

uniformly positive definite, and writeHXX∗f(X)− cfCI
A

� 0 [23].
When f is only convex but not strongly convex, then cfC = 0.

Motivated by the Taylor expansion above, and using the same
symbols Si and Ci to denote the complex counterparts of Si and Ci
introduced for the real case [cf. (2)], let us consider for each user
i the following convex approximation of U(X) at Xn: denoting by
∆Xi , Xi −Xn

i ,

f̃Ci
(Xi;X

n) ,
∑

j∈Ci

fj(Xi, X
n
−i) + 〈ΠCi

(Xn), ∆Xi〉

+
τi
2

vec([∆Xi,∆X∗
i ])

HHi(X
n) vec([∆Xi,∆X∗

i ])

(12)
with ΠCi

(Xn) ,
∑

j∈C−i
∇X∗

i
fj(X)

∣∣
X=Xn

, where Hi(X
n) is

any given 2nm × 2nm matrix such that Hi(X) − cHi
I

A

� 0, for
all X ∈ X and some cHi

> 0. Note that if Hi(X) = I, the
quadratic term in (12) reduces to the standard proximal regulariza-
tion τi ‖Xi −Xn

i ‖
2

F
. Then, the best-response matrix function of

each user i ∈ I is

X̂Ci
(Xn, τi) , argmin

Xi∈Ki

f̃Ci
(Xi;X

n). (13)

Decomposition algorithms for (9) are formally the same as those
proposed in Sec. 2 for (1), where the real-valued best-response map
x̂(xn, τ ) is replaced by the complex-valued counterpart X̂C(X

n, τ )

, (X̂Ci
(Xn, τi))

I
i=1. Convergence conditions read as those in The-

orem 1, under the following changes [19]: i) L∇U becomes LC

∇U ;

ii) Hi(x) − cHi
I � 0 reads Hi(X) − cHi

I
A

� 0; and iii) in the
definition of cτ in Theorem 1a), cHi

and cfi(x−i) are replaced by
cHi

and cfCi
(X−i), respectively, where cfCi

(X−i) is the constant
of strong convexity of

∑
j∈Ci

fj(•, X
n
−i) on Ki.

4. THE SUM-RATE MAXIMIZATION PROBLEM

In this section, we customize the proposed decomposition frame-
work to a sum-rate maximization problem over MIMO Gaussian
ICs, and compare the resulting new algorithm with state-of-the-art
schemes [8, 9, 14]. Consider the sum-rate maximization problem

maximize
Q1,...,QI

∑

i∈I

wi ri(Qi,Q−i)

subject to Qi ∈ Qi, ∀i ∈ I.

(14)

where r(Qi,Q−i) is the rate over the MIMO link i,

ri(Qi,Q−i) , log det
(
I+H

H
iiRi(Q−i)

−1
HiiQi

)
, (15)

Qi is the covariance matrix of transmitter i, Ri(Q−i) , Rni
+∑

j 6=i
HijQjH

H
ij is the covariance matrix of the multiuser inter-
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ference plus the thermal noise Rni
(assumed to be full-rank), with

Q−i , (Qj)j 6=i, Hij is the channel matrix between the j-th trans-
mitter and the i-th receiver, and Qi is the feasible set of user i,

Qi ,
{
Qi ∈ C

ni×ni : Qi � 0, tr(Qi) ≤ Pi, Qi ∈ Zi

}
, (16)

where Pi is the transmit power budget. In Qi we also included an
arbitrary convex and closed setZi, which allows us to add additional
constraints, such as: i) null constraints UH

i Qi = 0, where U is a tall
full-column rank matrix; ii) soft-shaping constraints tr

(
GH

i QiGi

)

≤ Iave
i , where Gi is an arbitrary given matrix; iii) peak-power con-

straints λmax

(
FH

i QiFi

)
≤ Ipeak

i ; and iv) per-antenna constraints
[Qi]kk ≤ αik . Note that the sum-rate maximization problems stud-
ied, e.g., in [8, 9, 11, 14] are special cases of (14).

This problem is of course an instance of (9), and alternative de-
compositions are possible [19]. Since each ri(Qi,Q−i) is concave
in Qi ∈ Qi, a natural choice is If = I and Ci = {i}, which leads to
the following class of strongly concave subproblems [cf. (4)]: given
Qn ∈ Q and choosing Hi(Q

n) = I, the best-response of user i is

Q̂i(Q
n, τi) ,

argmax
Qi ∈ Qi

{
wi ri(Qi,Q

n
−i)− 〈Πi(Q

n),Qi〉 − τi ‖Qi −Qn
i ‖

2

F

}

where Πi(Q
n) ,

∑
j∈Ni

wj H
H
jiR̃j(Q

n)Hij , Ni is the set of
neighbors of user i, i.e., the set of users j’s which user i interferers
with, and R̃j(Q

n) , Rj(Q
n
−j)

−1−
(
Rj(Q

n
−j) +HjjQ

n
j H

H
jj

)−1
.

Given Q̂i(Q
n, τi), one can now use any instance of Algorithm

1. For example, a good candidate is the scheme with diminishing
step-size, whose convergence is guaranteed if, e.g., the rule in (7) is
used for the sequence {γn} [Theorem 1b)]. Note that the proposed
algorithm is fairly distributed. Indeed, given the covariance matrix
of the interference generated by the other users and the current inter-
ference price matrix Πi(Q

n), each user can efficiently and locally
compute his best-response Q̂i(Q

n, τi) solving a strongly concave
optimization problem. Moreover, for some specific structures of the
feasible sets Qi, full-column rank channel matrices Hi, and τi = 0,
a solution in closed form (up to the multipliers associated with the
power budget constraints) is also available [9]. The estimation of
the prices Πi(Q

n) requires however some signaling among nearby
receivers. Quite interestingly, the pricing expression and thus the
resulting signaling overhead necessary to compute it coincides with
that in [8, 9, 14]. But, because of their sequential nature, algorithms
in [8, 9] require more CSI exchange in the network than the proposed
simultaneous schemes.
Numerical Example. We compare now our Algorithm 1 based on
Q̂i(Q

n, τi) and the rule in (7) (termed SJBR) with those proposed in
[8, 9] (termed MDP), and [14] (termed WMMSE). Since the meth-
ods in [8, 9, 14] deal only with power budget constraints, we sim-
plified the sum-rate maximization problem (14) accordingly; we set
wi = 1, Pi = P and Rni

= σ2I for all i, and snr , P/σ2 = 3dB.
All the transmitters/receivers are equipped with 4 antenna. We sim-
ulated uncorrelated fading channels, whose coefficients are gener-
ated as i.i.d. Gaussian random variables with zero mean and vari-
ance 1/d3ij , where dij is the distance between the transmitter j and
the receiver i; for the sake of simplicity, we set d , dij/dii, with
dij = dji and dii = djj , for all i and j 6= i. In (7) we chose
ǫ = 1e − 5. In Fig. 1, we plot the average number of iterations
required by the aforementioned algorithms to converge (under the
same termination criterion set to 1e− 6) versus the number of users.
The average is taken over 100 independent channel realizations and
d = 3. In Table 1, we report the average number of iterations re-

quired to converge for different (normalized) distances d, number of
users, and termination accuracy equal to 1e-3. In our experiments,
all the algorithms reach the same average sum-rate.

The analysis of the numerical results shows that the proposed
SJBR outperforms all the others schemes in terms of iterations, while
having similar (or even better) computational complexity (see [19]
for details on the complexity analysis). Interestingly, the iteration
gap with the other schemes reduces with the distance and the ter-
mination accuracy. More specifically: i) SJBR seems to be much
faster than all the other schemes (about one order of magnitude)
when d = 3 [say low interference scenarios], and just a bit faster
(or comparable to WMMSE) when d = 1 [say high interference
scenarios]; and ii) SJBR is much faster than all the others, if an high
termination accuracy is set (compare Fig. 1 with Table I). Also, the
convergence speed of SJBR is not affected too much by the num-
ber of users. Finally, in our experiments, we also observed that the
performance of SJBR are not affected too much by the choice of the
parameter ǫ in the (7): a change of ǫ of many orders of magnitude
leads to a difference in the average number of iterations which is
within 5%; we refer the reader to [24] for details, where one can also
find a comparison of several other step-size rules. We must stress
however that MDP and WMMSE do not need any tuning, which is
an advantage with respect to our method.

5 15 25 35 45 55 65 75 85 95
10
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Number of Iterations

 

 

MDP
WMMSE
SJBR

Fig. 1. Average number of iterations versus number of users (termi-
nation accuracy= 1e− 6).

# of users = 10 # of users = 50 # of users = 100

d=1 d=2 d=3 d=1 d=2 d=3 d=1 d=2 d=3
MDP 429.4 74.3 32.8 1739.5 465.5 202 3733 882 442.6
WMMSE 51.6 19.2 14.7 59.6 24.9 16.3 69.8 26.0 19.2
SJBR 48.6 9.4 4.0 46.9 12.6 5.1 49.7 12 5.5

Table 1. Average number of iterations (termination accuracy=1e-3)

5. CONCLUSIONS

In this paper, we proposed a novel decomposition framework, based
on SCA, to compute stationary solutions of general nonconvex sum-
utility problems (including social functions of complex variables).
The main result is a new class of convergent distributed Jacobi best-
response algorithms, where all users simultaneously solve a suitably
convexified version of the original social problem. Quite interest-
ingly, our framework contains as special cases many decomposi-
tion methods already proposed in the literature, such as gradient al-
gorithms, and many block-coordinate descents schemes for convex
functions. Finally, we tested our methodology on the sum-rate max-
imization problem over MIMO ICs; our experiments show that our
algorithms are (much) faster than ad-hoc state-of-the-art methods
[8, 9, 14]. We are currently investigating how to adaptively choose
the step-size rule (so that no a-priori tuning is needed), and how to
generalize our framework to scenarios where only long-term channel
statistics are available.
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