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ABSTRACT
We investigate the impact of channel estimation on the performance
of downlink random cellular networks. First, we derive a new
closed-form expression for the coverage probability under certain
practical conditions. We show that the coverage probability is de-
pendent on the user and base station (BS) densities solely through
their ratio for arbitrary pilot-training length. Next, we derive the op-
timal pilot-training length that maximizes the area spectral efficiency
(ASE) in several asymptotic regimes, and capture the dependence of
this optimal length on the ratio between the user and BS densities.
The ASE loss due to training is shown to be less significant in small
cell networks with a larger base station density.

Index Terms— Channel estimation, downlink random cellular
networks, coverage probability, area spectral efficiency

1. INTRODUCTION

Pilot-training is a practical way to obtain channel state information
(CSI) at the receiver, which is essential to perform coherent data
detection. Because the channels are estimated, errors in the estima-
tion impact subsequent communication performance. The impact of
channel estimation (CE) errors has been extensively investigated in
different network architectures including simple network settings [1,
2] and cellular networks [3–6]. A limitation of prior works [3–6] is
that a deterministic network configuration was configured. Unfortu-
nately, deterministic networks do not capture the irregularity found
in realistic cellular deployments.

Recently, a stochastic model for cellular networks was proposed
in [7–11], where the locations of the base stations (BSs) are modeled
as a Poisson point process (PPP). This model facilitates the use of
mathematical tools from stochastic geometry [12] to derive network-
wide performance measures. A main advantage of the stochastic
geometry framework is that it permits the evaluation of closed-form
network-wide performance measures. The model was also found to
predict performance that was a good fit with measured BS locations
[11], and has been widely used in other works [13–17]. Prior works,
however, did not address the impact of CE error.

In this paper, we investigate the impact of CE on the perfor-
mance of downlink random cellular networks, where the locations
of BSs are modeled as a PPP and each user employs the minimum-
mean-square-error (MMSE) estimator to obtain an estimate of the
channel to its serving BS. First, we derive a new closed-form ex-
pression for the coverage probability under interference-limited con-
dition. Then we show that the coverage probability is dependent on
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the user and BS densities solely through their ratio for arbitrary pilot-
training length. Next, we derive the optimal pilot-training length that
maximizes the area spectral efficiency (ASE) in several asymptotic
regimes, and capture the dependence of this optimal length on the
ratio between the user and BS densities. We show that the ASE loss
due to training is less significant in small cell networks with a larger
BS density. In our recent paper [18], we investigated the impact of
CE in decentralized wireless ad hoc networks, where each transmit-
ter has an intended receiver with a fixed distance away. In this paper,
however, we consider cellular networks, and also vary the number of
users each BS connects to and the distance between each BS and its
user.

2. SYSTEM MODEL

We assume the locations of the BSs in the cellular networks are spa-
tially distributed as a PPP Φb of density λb and transmit at power
P . The locations of the users are also modeled by an independent
PPP Φm of density λm. Due to Slivnyak’s theorem [12], we con-
duct analysis on a typical mobile user located at the origin. We as-
sume that each user connects to the nearest BS, i.e., the users in the
Voronoi cell of a BS are associated with it. The transmitted signals
are attenuated by a factor 1

rα
with distance r where α > 2 is the path

loss exponent. At the physical layer, each user obtains an estimate
of CSI to its serving BS via pilot-training symbols sent from this BS.
The pilot-training symbols, which are initially known at both the BS
and users in the same cell, are broadcasted by each BS to its con-
necting users. During the data transmission stage, we assume that
the orthogonal multiple access technique, e.g., time devision multi-
ple access (TDMA), is utilized within a cell, so that each BS serves
one user at a time and no intra-cell interference exists.

We consider the block fading channel, where the transmitter-
receiver channels are constant over a block comprising of WcTc
channel uses, with one symbol per channel use, and evolves inde-
pendently from block to block. The factor Tc corresponds to the
coherence time, while the factor Wc refers to the coherence band-
width. During each block, each transmitter sends a frame of length
L = WcTc (i.e., assumed equal to the block length, as in [1, 19])
to its corresponding receiver, which comprises of LT pilot-training
symbols, followed by L−LT data symbols. The pilot-training sym-
bols are utilized by the user to obtain an estimate of the channel.
This channel estimate is then used to detect the data symbols trans-
mitted from the corresponding BS. This procedure is repeated over
all subsequent frames.

Before describing the CE and data detection procedures in more
detail, we first note that if the user density λm is not sufficiently
large, some BSs may possibly connect to no user. In this case, these
unconnected BSs do not transmit signals in the coming time slots
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until the locations of the users change, and they have some users to
serve. Consequently, we need to provide the transmission probabil-
ity of each interfering BS, which is as follows.

Lemma 1. The transmission probability of each interfering BS is

pt ≈ 1−

(
3.5

3.5 + λm
λb

)3.5

. (1)

Proof. See [20].

We observe from (1) that the transmission probability of each
interfering BS increases with λm

λb
. This indicates that for a suffi-

ciently large user density λm (compared to the BS density λb), pt
approaches one, i.e., each interfering BS connects to at least one
user. This is consistent with the intuition and is also the case con-
sidered in [13]. Note that the approximation in (1) has been shown
to be quite accurate. As explained in [20], the active interfering BSs
are approximated as a PPP Φ of density λ ≈ ptλb. Further, we see
from (1) that when the density ratio λm

λb
is not sufficiently high, pt is

small, so that only a small fraction of the BSs are active. For exam-
ple, when λm = λb, then λ ≈ 0.585λb, i.e., only about half of the
BSs are actually active.

2.1. Channel Estimation Stage

The LT × 1 baseband equivalent received vector y0 at the typical
user, formed by concatenating the LT received symbols during the
first LT channel uses, is given by

y0 =

√
LTP

rα0
h00t00 +

∑
B`∈Φ(λ)/B0

√
P

|D`0|α
h`0x` + n0 (2)

where1 h00
d∼ CN (0, 1) is the channel between the typical user

and its serving BS, h`0
d∼ CN (0, 1) is the channel of the `th BS

with respect to (w.r.t.) the typical user, r0 is the distance between
the typical user and its serving BS, B` is the location of the `th BS,
B0 denotes the location of the typical user’s serving BS, t00 is a
LT × 1 training symbol vector satisfying t†00t00 = 1 [21], x`

d∼
CNLT×1 (0, ILT ) is a transmission vector2 from node `, and n0

d∼
CNLT×1 (0, N0ILT ) is the additive white Gaussian noise (AWGN)
vector. Note that h00, h`0, t00, x` and n0 are independent. The first
step of CE is to assemble the observation scalar signal y = t†00y0 at
the typical user as

y =

√
LTP

rα0
h00 +

∑
B`∈Φ(λ)/B0

√
P

|D`0|α
h`0q`0 + z0 (3)

where q`0 = t†00x`
d∼ CN (0, 1), and z0 = t†00n0

d∼ CN (0, N0).
To obtain an estimate of the channel, we use the low-complexity

linear MMSE estimator. According to standard MMSE estima-
tion [22], conditioned on the distance between the typical user and

its serving BS r0, the estimate of h00 is ĥ00|r0 =
E[h00y

∗]
E[yy∗] y =

1The notation X
d∼ Y means that X is distributed as Y .

2The Gaussian assumption for the interfering symbols is well justified. As
we will show, the optimal pilot-training length is typically small compared to
the frame length. In the optimal scenario, the majority of the frame is thus
used for data transmission, as opposed to pilot training, during which the data
symbols transmitted from all nodes are Gaussian distributed.

√
LT P

rα0
LT P

rα0
+N0+PVar(I)

y, where I =
∑
B`∈Φ(λ)/B0

√
1

|D`0|α
h`0q`0

and Var(I) is calculated conditioning on r0. According to Camp-
bell’s Theorem [12] and conditioning on r0, Var(I) is calculated
as

Var(I) = 2πλ

∫ ∞
r0

r1−αdr = 2πλ
r2−α
0

α− 2
. (4)

The CE error can be expressed as e00 = h00 − ĥ00, where e00
d∼

CN
(
0, σ2

e

)
, and ĥ00 and e00 are uncorrelated [2]. After some al-

gebraic manipulations, the variance of the CE error, given that the
distance between the typical user and its serving BS is r0, is

σ2
e |r0 =E

[(
h00 − ĥ00|r0

)2
]

=
1

1 + LT
rα0

1

1
ρ

+2πλ
r
2−α
0
α−2

(5)

where ρ = P
N0

is the transmit signal-to-noise ratio (SNR).

2.2. Data Transmission Stage

After the CE stage, the BS then sends data for the rest of the frame
duration. The received signal at the typical receiver during the nth
channel use, for n = LT + 1, . . . , L, is given by

d0[n] =

√
1

rα0
ĥ00s0[n]

+

√
1

rα0
e00s0[n] +

∑
B`∈Φ(λ)/B0

√
1

|D`|α
h`0s`[n] + n0[n]

︸ ︷︷ ︸
unknown at the receiver

(6)

where s0[n] and s`[n] are independent Gaussian distributed data
symbols from the typical and the `th transmitting node, respectively,
satisfying E

[
|s0[n]|2

]
= P and E

[
|s`[n]|2

]
= P , and n0[n]

d∼
CN (0, N0) is AWGN. As the terms in (6) which are unknown at
the receiver are treated as noise, an estimate of s0[n] is then formed

as ŝ0[n] =
√
rα0

ĥ∗00
|ĥ00|2

d0[n], from which the signal-to-interference-
plus-noise ratio (SINR) can be written as

SINR0 =

ρ
rα0
|ĥ00|2∑

B`∈Φ(λ)/B0

ρ
|D`|α

|h`0|2 + ρ
rα0
σ2
e |r0 + 1

. (7)

3. PERFORMANCE ANALYSIS: COVERAGE
PROBABILITY AND AREA SPECTRAL EFFICIENCY

In this section, we will investigate the impact of CE on the coverage
probability and ASE.

3.1. Coverage Probability

The coverage probability is defined as the probability that the mutual
information of the channel between the typical user and its serving
BS is larger than a target rate Reff data bits/node/channel use, and is
given by

pc (β, LT ) : = Pr

((
1− LT

L

)
log2 (1 + SINR)

M
> Reff

)
= Pr

((
1− LT

L

)
log2 (1 + SINR)

M
>

(
1− LT

L

)
R

M

)
= Pr(SINR > β) (8)
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pc (β, LT ) =2πλb

∫ ∞
0

exp

(
−2πλ

(
πr2

0β
2
α

α sin
(

2π
α

)
(1− σ2

e |r0)
2
α

− 1

2
r2
0 2F1

(
1,

2

α
; 1 +

2

α
;−1− σ2

e |r0
β

)))

× exp

−β
(
σ2
e |r0 −

rα0
ρ

)
1− σ2

e |r0

 r0 exp
(
−λbπr2

0

)
dr0 (9)

where M (M ≥ 1) is the number of users connected to the typi-
cal user’s serving BS, R is the rate in which the data is encoded at
the transmitter over the data transmission stage, β = 2R − 1 is the
SINR operating value, and the second line of (8) follows by noting
that Reff =

(
1− LT

L

)
R
M

, which is taken over the whole frame and

the whole service duration. Note that the factor (1− LT
L

) represents
the fractional amount of time (relative to the total frame length) used
for data transmission [18], and the factor 1

M
represents the fractional

amount of time used for serving the typical user (due to the use of
TDMA). Based on (7), we first state the most general result for cov-
erage probability, from which all other results in this section follow.

Theorem 1. The coverage probability of a randomly selected user
is given by (9) at the top of this page, where 2F1 (a1, a2; b1; z) is the
Gaussian hypergeometric function [23, Eq. (15.1.1)].

Proof. Follows by first conditioning on r0 and averaging out the
aggregate interference by utilizing the probability generating func-
tional of a PPP [24]. Then (9) is obtained by getting rid of the con-
dition on r0.

The integral in (9) is fairly easy to be evaluated numerically.
In particular, it is much easier than doing the Monte Carlo simula-
tion, where it is required to first select the serving BS for the typi-
cal user and calculate the aggregate interference from all the other
active BSs over an infinite plane. Because solving the integral in
closed-form appears intractable, to obtain more insights, we evalu-
ate performance in asymptotic regimes. We first note that for cellular
conditions, it is reasonable that λb � 1 (implying λ � 1). In this
case, further considering the interference-limited scenario where the
noise is negligible3 (i.e., ρ→∞) and α = 4, we have the following.

Corollary 1. When α = 4, λ � 1 and ρ → ∞, the coverage
probability in (9) is approximated as

pc (β, LT ) ≈

√
2πLT

(
1 + 1

β

)
pt

exp
(
η2)Q(√2η

)
(10)

where η =

√
LT

(
1+ 1

β

)
2

(√
β
(
π−2 arctan

(
1√
β

))
2

+ β
LT

+ 1
pt

)
, and

Q(x) = 1√
2π

∫∞
x

exp
(
− t

2

2

)
dt is the Q-function.

Proof. Omitted due to space limitations.

We see from (10) that when ρ → ∞, the dependence of
pc (β, LT ) on λm and λb is solely through pt, or equivalently,
λm
λb

. This is confirmed in Fig. 1, which plots the coverage proba-
bility pc(β, LT ) vs. the BS density λb for λm

λb
= 1 by using (9).

3Note that the noise can be neglected (i.e., N0 → 0) in the cell interior
because it is very small compared to the desired signal power, and also at the
cell edge due to the much larger interference power [11].
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Fig. 1. Coverage probability pc (β, LT ) vs. BS density λb for differ-
ent transmit SNR ρ and different pilot-training lengths LT , and with
α = 4, β = 0 dB, and λm = λb.

We see from Fig. 1 that when ρ is very high, e.g., ρ ≥ 30 dB,
the trend of pc(β, LT ) going to be independent of λb is evident
as ρ increases. This can be explained by noting that when λm

λb
is

fixed, a larger λb leads to a larger aggregate interference (and also a
worse CE quality), but meanwhile, it decreases the average distance
between the typical user and its serving BS (which also implies a
better CE quality), which is beneficial. When ρ is sufficiently high,
these two competing factors are counter-balanced, which holds true
for arbitrary LT . Therefore, in this case, the coverage probability
can not be improved by simply deploying more BSs. Instead, some
interference mitigation techniques should be employed to improve
the coverage. Note that in [11, Eq. (14)], it was shown that the
coverage probability is independent of the BS density in the perfect
CSI scenario (LT → ∞) when ρ → ∞ and pt = 1. This can be
easily seen from (10) by letting pt = 1. Fig. 1 also indicates the
result in Corollary 1 holds true for moderately large λ.

When ρ is low or moderately high, we see from Fig. 1 that a
larger λb is beneficial for a higher coverage, even when λm

λb
is fixed.

This can be explained by noting that when ρ is not sufficiently high,
due to the existence of noise, the negative impact of more aggregate
interference caused by a larger BS density becomes less significant.
Therefore, the positive impact dominates the coverage probability.
Moreover, we note from Fig. 1 that for a fixed ρ, to achieve a certain
coverage improvement, less BSs are required to be deployed for a
larger LT .

3.2. Area Spectral Efficiency

The ASE is defined as the average total number of successfully trans-
mitted data bits/channel use/unit area in the downlink. Taking into
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Fig. 2. Optimal pilot-training lengthL∗T vs. BS density λb for differ-
ent SINR thresholds β in the interference-limited scenario, and with
α = 4, λm = 0.0001 nodes/m2, and L = 1250.

account the effect of CE, the ASE is given by

T (LT ) = Reff (LT , R)λpc (β, LT ) . (11)

Substituting the coverage probability expression in (9) into (11), we
obtain the ASE in general environment of the cellular networks.

From (11), we observe that increasing LT has both a positive
and a negative effect on the ASE. The positive effect occurs since
the coverage probability pc (β, LT ) increases with LT . The nega-
tive effect occurs since for a fixed frame length L, the time spent for
data transmission decreases with LT . A natural question then arises
as to the optimal pilot-training lengthL∗T which maximizes the ASE.
To obtain some insights into the optimal fraction of training, we con-
sider the asymptotic regime.

Theorem 2. When α = 4 and ρ → ∞, if λm
λb

is sufficiently small,
the optimal pilot-training length that maximizes the ASE is

L∗T =


⌊
L̃∗T

⌋
if T

(⌈
L̃∗T

⌉)
≤ T

(⌊
L̃∗T

⌋)
⌈
L̃∗T

⌉
otherwise

(12)

where4 L̃∗T =
√

2βptL

2−pt
√
β
(
π−2 arctan

(
1√
β

)) .

Proof. Follows by first applying [23, Eq. (7.1.23)] to (10) to obtain
an asymptotic coverage probability, and substituting it into (11) to
obtain the asymptotic ASE. We then take Taylor series expansion
on ASE for small pt as described in [25], and take derivatives to
calculate L̃∗T .

From (12), we see that L∗T increases with the frame length L,
and in particular for large L, L∗T scales as O

(√
L
)

. This implies

that for large L, the fraction of the total frame length for CE, L
∗
T
L

,

scales asO
(

1√
L

)
, which can be quite small. The practical interpre-

tation is that for large L, it is preferable to dedicate a larger propor-
tion of the frame for data transmission. Similar results were obtained

4Note that d·e and b·c are the ceiling and floor functions respectively.
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in [26] for a time-division duplexing multiuser MIMO downlink sce-
nario, and in [18] for an ad hoc network scenario.

Fig. 2 plots the optimal pilot-training length L∗T vs. the BS den-
sity λb. We observe that the ‘Analytical’ curves plotted using (12)
closely match the numerical results, which are obtained by numer-
ically solving L∗T based on (9), for sufficiently large λb (or equiv-
alently, for sufficiently small pt). Further, we observe that L∗T de-
creases with λb, i.e., L∗T increases with pt, as predicted by (12). It
is thus optimal to use a larger fraction of the frame for data trans-
mission in the small cell network which has a relatively large BS
density, e.g., femto cells. Note that although (12) is not very accu-
rate for small λb, the ‘Analytical’ curves show the same trend as the
numerical curves, as can be seen from Fig. 2. Moreover, for large
cell networks with a small BS density, e.g., macro cells, the optimal
pilot-training length can be calculated numerically based on (9).

We now compare the ASE when usingL∗T with an ideal (imprac-
tical) scenario where perfect CSI is obtained without the need for
any training. In this ideal scenario, the ASE is given by Tperfect =
log2 (1 + β)λpc (β,∞). For large L, it can be shown that

T
(
L̃∗T

)
Tperfect

=1− 2

√√√√ 2βpt

2− pt
√
β
(
π − 2 arctan

(
1√
β

))√ 1

L
+O

(
1

L

)
.

(13)

One key insight drawn from (13) is that for channels with a suffi-
ciently long coherence time (i.e., the channel remains constant dur-
ing the transmission of a packet of length L, whose value may be
large), there is a negligible performance loss resulting from channel
estimation compared to the perfect CSI scenario.

We also observe from (13) that
T(L̃∗T )
Tperfect

decreases with the trans-
mission probability pt, or equivalently, increases with the BS density
λb for a fixed λm. This is confirmed in Fig. 3, where the curves are
plotted by numerically solving T (L∗T ) based on (9). The implica-
tion is that for small cell networks with a larger BS density, the ASE
loss due to training is less significant.
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