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ABSTRACT

In this paper we provide an efficient procedure to compute the total
number of degrees of freedom (DoF), achievable by linear beam-
forming, of the K-user multiple-input multiple-output (MIMO) in-
terference channel with an arbitrary number of Tx-Rx antennas at
each link. Firstly, we derive an analytical outer bound that gener-
alizes the results that exist for the symmetric K-user M ×N inter-
ference channel. Secondly, we obtain a tighter bound by solving a
convex optimization problem that includes as constraints the DoF
characterizations for point-to-point MIMO links and for 2-user in-
terference channels. The solution to this convex problem admits an
interesting waterfilling interpretation. Finally, exploiting this outer
bound and using a recently proposed feasibility test, we show that
it is possible to obtain the DoF for any interference channel in an
efficient way. Some simulations results are included to illustrate the
tightness of the derived bounds, as well as to study the DoF achiev-
able for the 4-user channel when we distribute the total number of
antennas among users and between transmitters and receivers in dif-
ferent ways.

Index Terms— Degrees of freedom, interference alignment,
multiple-input multiple-output, convex optimization

1. INTRODUCTION

It has been recently shown that, to achieve the maximum spatial de-
grees of freedom (DoF) of theK-user multiple-input multiple-output
(MIMO) interference channel (IC), the interference from other trans-
mitters must be aligned at each receiver in a lower-dimensional sub-
space. This idea was first proposed for the MIMO X channel in
[1, 2] and was thereafter called interference alignment (IA). It was
shortly demonstrated that IA was instrumental to achieve the opti-
mal K/2 DoF, when applied to the fully connected K-user single-
input single-output channel with time-varying channel coefficients
[3]. Spurred by this important result, many variants of the original
alignment technique have recently been proposed to approximately
characterize the capacity (in terms of DoF) of several multiterminal
interference networks. In particular, in this paper we will focus on
schemes that apply linear precoding and decoding in signal vector
space for MIMO interference channels with constant channel coeffi-
cients.

The research leading to these results has received funding from
the Spanish Government (MICINN) under projects TEC2010-19545-
C04-03 (COSIMA) and CONSOLIDER-INGENIO 2010 CSD2008-00010
(COMONSENS). It also has been supported by FPU grants AP2009-1105
and AP2010-2189.

The 2-user MIMO IC was tackled in [4], leading to an exact
expression for the DoF which is valid for both constant and varying
channel coefficients. When K ≥ 3 and the MIMO IC coefficients
are constant, only some partial results exist. For example, in [5, 6, 7]
the DoF of the 3-user M × N MIMO IC have been found for the
case where every user sends the same number of streams. For the
symmetricK-user IC withM×N links, inner and outer DoF bounds
were found in [8, 9].

The problem of finding the DoF for an arbitrary IC is closely
related to the problem of whether a given DoF tuple is feasible or
not, which has recently given some interesting results for particular
channel instances. Specifically, [5] proves a sufficient and necessary
feasibility condition for the symmetric square case, where all links
are N ×N and there are at least three interfering users (K ≥ 3). For
the general case with arbitrary system parameters, only a necessary
condition is proved in [5]. A general bound on the tuple of achiev-
able DoF is given in [10], where it is also shown that, for the par-
ticular case of symmetric systems with a number of transmit and re-
ceive antennas multiple of the number of streams, the bound is tight.
More recently, a fully general feasibility test has been proposed in
[11, 12]. In principle, this test could be used to obtain the DoF for
arbitrary K-user MIMO IC by exhaustively checking the feasibility
of all possible DoF tuples. However, even for simple scenarios, this
exhaustive search rapidly becomes intractable. In this paper, we ad-
dress this problem and propose a much simpler procedure to find the
DoF for arbitrary MIMO interference channels. As a first step, we
propose several upper bounds with different degrees of complexity
and tightness. Secondly, a search algorithm is proposed which, ex-
ploiting these bounds and using the feasibility test in [11, 12], is able
to efficiently find the actual DoF for arbitrary networks.

2. SYSTEM MODEL

Consider theK-user MIMO IC comprised ofK transmitter-receiver
pairs. The k-th user is equipped with Mk and Nk antennas at
the transmitter and receiver side, respectively, and each transmitter
wishes to send dk ≥ 0 streams to the other side of the link. We
adhere to the notation used in [13] and denote this general IC as
∏Kk=1(Mk × Nk, dk) = (M1 × N1, d1)⋯(MK × NK , dK). The
channel output at the k-th receiver is given by

yk =HkkVksk +∑
l≠k

HklVlsl + nk, (1)

where sk is the dk ×1 transmitted signal, which is precoded by a full
column-rank matrix Vk ∈ CMk×dk , and nk is the zero-mean unit-
variance circularly symmetric additive white Gaussian noise vector.
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The first term in (1) is the desired signal, while the second term rep-
resents the interfering signal. In order to suppress the interference,
the k-th receiver applies a linear decoder Uk ∈ CNk×dk , i.e.,

UH
k yk =UH

k HkkVksk +∑
l≠k

UH
k HklVlsl +UH

k nk. (2)

The interference alignment problem consists in finding the matrices
Vk and Uk in such a way that the interfering signals at each receiver
fall into a reduced-dimensional subspace leaving an interference-free
subspace for the desired signal. To this end, it is required that the
polynomial equations

UH
k HklVl = 0, k ≠ l, (3)

are satisfied, while the signal subspace for each user must be linearly
independent of the interference subspace and must have dimension
dk, that is

rank(UH
k HkkVk) = dk, ∀k ∈ {1, . . . ,K}. (4)

In [13], systems were classified as either proper or improper. A sys-
tem is proper if and only if for every subset of equations in (3),
the number of variables is at least equal to the number of equa-
tions in that subset. This evaluation may be computationally de-
manding with the additional limitation that properness is necessary
[10, 12] but not sufficient for a system to be feasible. For that rea-
son, in this paper we will consider a simpler definition of properness
which just considers the total set of equations, as in [14]. Let us
define s = ∑k(Mk +Nk)dk − (∑k dk)2 −∑k d2

k as the difference
between the number of variables and equations in the system (3).
When s < 0 a system will be termed improper, and then infeasible,
whereas a proper system (s ≥ 0) can be either feasible or infeasible.

Finally, the capacity region C(ρ) of the K user MIMO IC is
the set of all the achievable rate tuples r(ρ) ≜ [r1(ρ), . . . , rK(ρ)]T
where rk(ρ) is the rate the k-th user can reliably sustain at a given
signal to noise ratio (SNR), ρ. The sum capacity of the system,
CΣ(ρ), is the maximum sum rate achieved by any tuple in C(ρ).
Its high SNR asymptote, D ≜ limρ→∞

CΣ(ρ)
logρ

, is known as the DoF
of the system, which, for our particular case, satisfies D = ∑Kk=1 dk.

Hereinafter, we use the notation w for the column vector con-
taining the variables wk, i.e. w = [w1, . . . ,wK]T . Additionally, we
define ak =Mk +Nk, bk = min(Mk,Nk) and J = 11T . Through-
out this paper we will use s in the following vector form:

s ≜ aTd − dT (J + I)d. (5)

3. DOF OUTER BOUNDS

In this paper we are interested in obtaining the feasible tuple, d,
which maximizes the achievable DoF for an arbitrary MIMO-IC:
∏Kk=1(Mk ×Nk, dk). More formally,

P0 ∶ maximize
d

1Td (6)

subject to
K

∏
k=1

(Mk ×Nk, dk) is feasible,

d ∈ NK .
It is always possible to find the global optimizer of P0 by exploring
all possible DoF tuples, checking their feasibility by means of the
test in [11], and selecting the tuple that maximizes 1Td. However,
due to the combinatorial nature of the problem, this approach may
be intractable. In order to diminish the associated computational
cost, we will propose in the following three different relaxations of
the original problem. These relaxations will allow us to find outer
bounds for the DoF with an increasing degree of tightness.
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Fig. 1. Waterfilling interpretation of the proposed DoF bound. In
this particular example, the point-to-point upper- and lower-bound
constraints are active for users 2 and 4, respectively, yielding the
tuple d1 = a1

2
+ µ, d2 = b2, d3 = a3

2
+ µ and d4 = 0, where µ is the

water level.

3.1. Analytic bound

The first relaxation loosens the two constraints of the original prob-
lem, P0. On the one hand, this new problem formulation replaces
the feasibility condition by the properness condition as defined in
Section 2, i.e. s ≥ 0, where s is written as in (5). On the other hand,
the entries of vector d are not required to be integer but real, i.e.,

P1 ∶ maximize
d

1Td (7)

subject to aTd − dT (J + I)d ≥ 0,

d ∈ RK .

The objective function for this problem is an unbounded linear func-
tion of d and therefore its maximum is attained when the first con-
straint is active (i.e. s = 0). Consequently, it can be solved ana-
lytically by Lagrangian optimization. The global maximum for this
problem, 1Td⋆, represents an upper bound of the original optimiza-
tion problem (6), whose solution has to be necessarily an integer.
Therefore, the bound is given by

Banalytic =
⎢⎢⎢⎢⎢⎣

1Ta +
√
K(aTa(K + 1) − (1Ta)2)

2(K + 1)

⎥⎥⎥⎥⎥⎦
. (8)

Remark 1: The expression in (8) can be trivially particularized to the
case where all transmitter-receiver pairs have the same total number
of antennas. Under this condition, (8) simplifies to

Banalytic = ⌊
∑Kk=1(Mk +Nk)

K + 1
⌋ . (9)

It must be noticed that this expression generalizes the outer bound
given in [15] for the K-user M × N MIMO interference channel,
which is given by

D ≤ ⌊K
M +N
K + 1

⌋ . (10)
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Fig. 2. Mean values of the proposed linear DoF bounds for different intra- and inter-user asymmetries. Some specific scenarios have been
pointed for illustration: ◯ (2 × 8,1)3(8 × 2,1), ◇ (2 × 2,1)3(14 × 14,11), ◻ (5 × 5,2)4 and △ (2 × 2,1)(3 × 5,1)(3 × 2,1)(7 × 16,5).

3.2. Waterfilling-based bounds

In order to improve the tightness of the analytical bound in (8), we
can add additional constraints to the optimization problem. For in-
stance, it is well-known that the number of streams transmitted by
each of the users, when considered independently, has to satisfy the
point-to-point bounds, 0 ≤ dk ≤ bk = min(Mk,Nk). This consider-
ation leads us to turn P1 into

P2 ∶ maximize
d

1Td (11)

subject to aTd − dT (J + I)d ≥ 0,

0 ≤ d ≤ b,

d ∈ RK .

When formulated this way, the problem is convex and, hence, can be
efficiently solved using standard software packages. Furthermore,
in this case it is possible to obtain a waterfilling interpretation of the
solution. To show this interpretation, let us first write the Lagrangian
associated to the current optimization problem

L(d, λ,α,β) = 1Td + (aTd − dT (J + I)d)λ +αTd −βT (d − b).
(12)

Thus, the Karush-Kuhn-Tucker (KKT) conditions for this problem
are

1 + (a − 2(J + I)d)λ +α −β = 0,

aTd − dT (J + I)d ≥ 0, 0 ≤ d ≤ b,

λ ≥ 0, α ≥ 0, β ≥ 0,

λ(aTd − dT (J + I)d) = 0,

α ○ d = 0, and β ○ (d − b) = 0,

(13)

where ○ denotes the Hadamard product. From the first equation in
(13), with α = 0 and β = 0, the optimal distribution of streams
among users can be written as

d⋆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2(K + 1)
( 1

λ⋆
− 1Ta)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Variable water level, µ

1 − (−a
2
)

²
Floor

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b

0

. (14)

where [●]u` is the element-wise operator min (u,max (`, ●)).
Therefore, (12) admits a waterfilling interpretation which is as
follows (see Figure 1):

1. For each of the K users, set up a unit-base vessel with height
bk on top of a floor of height −ak/2.

2. Pour water keeping a flat water level across all vessels. The
available volume of water is given by s. In other words, s < 0
means that you have exceeded the total amount of water.

3. If some vessel overflows, keep filling the rest of vessels.
4. When all the available water has been poured or all the vessels

have been filled, the amount of water in each vessel gives the
optimum stream value for that user, d⋆k.

The total amount of water, ∑k d⋆k = 1Td⋆, gives us the sought DoF
upper bound, BWF1 = ⌊1Td⋆⌋ .
Remark 2: The foregoing interpretation shows that the optimal (non-
integer) stream profile is a downshifted version of a/2 (the mean
number of antennas per user), which is element-wise bounded from
the top and the bottom by b and 0, respectively.

The previous bound can be further improved by adding, as con-
straints, the DoF results for the 2-user IC obtained in [4]. In particu-
lar, any two users in the channel must satisfy

di + dj ≤ min(Ni +Nj ,Mi +Mj ,max(Ni,Mj),max(Nj ,Mi)).
(15)

In addition to include all pairs of users, we can also consider groups
of users that cooperate and jointly process their data in such a way
that a new 2-user interference channel is created. In summary, con-
sidering all cooperative 2-user groups gives us a total of 2K −K − 1
new upper bounds that can be added to our optimization problem.
When all these bounds along with the point-to-point ones are repre-
sented by the variables bJ , ∀J ⊆ K, they lead to a convex optimiza-
tion problem similar to P2, but with the second constraint substituted
by:1

0 ≤ ∑
k∈J

dk ≤ bJ , ∀J ⊆ K. (16)

Once the optimal solution to this problem is found, a new upper
bound of the DoF is obtained by taking the largest previous integer
BWF2 = ⌊1Td⋆⌋ .

1This problem admits a similar waterfilling interpretation, but the details
are omitted due to lack of space.
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Fig. 3. DoF region for the 4-user system (3 × 4, d1)(4 × 11, d2)(5 × 5, d3)(6 × 2, d4) using linear beamforming.

4. COMPUTING THE DOF

In this section we propose an efficient algorithm to find the actual
linear DoF value. The algorithm is basically an ordered search that
starts from those tuples whose DoF are exactly any of the outer
bounds obtained in this paper and works as follows:

1. Assume that the DoF are bounded above by B (which can be
any of the bounds in this paper).

2. Generate all the possible tuples of integer numbers adding
up exactly B. In number theory this is usually referred to
as computing all the restricted compositions of an integer B.
The term restricted comes from two facts: 1) the number of
summands or parts that the composition is allowed to have is
equal to K; 2) there exist upper and lower bounds on the val-
ues of each part. More specifically, each part, dk, must verify
0 ≤ dk ≤ bk. A great deal of attention has been focused on
algorithms that are able to compute restricted compositions,
leading to reasonably fast algorithms with good time com-
plexity as the one in [16] (O(K) per composition where K
equals the number of parts). For the interested reader, the
work [16] also provides closed form solutions to the problem
of counting these doubly restricted integer compositions.

3. Check only those proper tuples for feasibility by means of
the test in [11]. B is the DoF value as soon as a feasible
tuple is found. If no feasible tuple is found among them, then
decrease the value of the bound, B ∶= B − 1, and start over
again.

5. SIMULATION RESULTS

In this section we show several simulation results that illustrate the
ideas presented in this paper. As an example, we consider a 4-user
MIMO IC with a total number of antennas: ∑Kk=1(Mk +Nk) = 40,
and with Mk ≥ 2 and Nk ≥ 2, ∀k. We study the DoF that can
be achieved with linear beamforming for different distributions of
the total number of antennas among users and between transmitters
and receivers. Two different measures are proposed to quantify the
asymmetry of a given scenario:

1

K
∑
k

∣Mk −Nk ∣
Mk +Nk

Intra-user asymmetry

, and
1

K
∑
k

∣Mk − M̄ ∣ + ∣Nk − N̄ ∣
M̄ + N̄

Inter-user asymmetry

, (17)

where M̄ and N̄ are the mean number of transmit and receive an-
tennas, respectively. Notice that there can be more than one network

with the same value of inter- and intra-user asymmetry, therefore we
will depict mean DoF values (averaged over all networks with the
same level of asymmetry) in the plots.

Figures 2(a) and 2(b) show how the mean value of the proposed
bounds evolves with the intra- and inter-user asymmetry, respec-
tively. The mean value of the actual DoF, D, is also shown in a
dotted line while the shaded area represents the whole range of fea-
sible DoF values and, thus, it may exceed the mean value of the
upper bounds. Both figures show that the waterfilling bound that in-
corporates the 2-user constraints (denoted as BWF2 ) is very close to
the actual achievable DoF in the whole asymmetry range. On the
other hand, the analytic bound and the waterfilling bound that uses
only point-to-point constraints (BWF1 ), are only tight for low val-
ues of asymmetry. This result suggests that for highly asymmetric
networks, the DoF are mainly limited by the 2-user channel con-
straints, whereas in symmetric or close-to-symmetric IC the proper-
ness condition limits the DoF. Alternatively, Fig. 2(a) shows that
the maximum DoF decreases as the intra-user asymmetry increases,
and so does in the mean sense. However, as Fig. 2(b) shows, when
the inter-user asymmetry increases the maximum DoF increases as
well, although the mean DoF value decreases. Let us remind that, for
a given value of any of the asymmetries, there are different scenar-
ios that achieve different DoF. For the sake of illustration, we have
pointed some specific scenarios in both figures. One such example
is the system (2 × 2,1)3(14 × 14,11) (designated by ◇), which, in
spite of having a high inter-user asymmetry, is able to achieve a total
of 14 DoF with minimum intra-user asymmetry.

As a final example, Figure 3 shows the DoF region of the system
(3×4, d1)(4×11, d2)(5×5, d3)(6×2, d4), which has been obtained
by checking the feasibility of all the possible DoF tuples. It required
a total of 208 executions of the feasibility test, whereas computing
the tuples in red which satisfy∑k dk = 7 and achieve the DoF of the
system, required only 7 executions when initialized in BWF2 .

6. CONCLUSION

In this paper, we have derived three different bounds on the spatial
DoF of an arbitrary MIMO IC. Based on these bounds and on a re-
cently proposed feasibility test, we have designed an efficient proce-
dure to compute the achievable DoF of a given scenario. Moreover,
we have shown that two of these bounds admit an interesting water-
filling interpretation. Our simulations illustrate the tightness of the
proposed bounds for a wide variety of scenarios. Further improve-
ments on these bounds represent our current lines of future research.
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