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ABSTRACT

In this paper, Pareto-optimal beamforming in the K-pair Gaussian
multiple-input multiple-output (MIMO) interference channel is con-
sidered. Under the assumption of Gaussian signaling at transmit-
ters and single-user decoding at receivers, a necessary condition for
any transmit signal covariance matrix to achieve a Pareto boundary
point of the achievable rate region is derived. Based on the nec-
essary condition for Pareto-optimality, an efficient parameterization
for Pareto-optimal transmit signal covariance matrices is obtained.
The obtained parameter space is given by the product manifold of
a Stiefel manifold and a subset of a hyperplane, which is a low di-
mensional embedded submanifold of the original high dimensional
beam search space. The new parameterization enables us to devise
very efficient beam design algorithms for the K-pair MIMO inter-
ference channel.

Index Terms— Interference Channels, Multiple-Input Multiple-
Output, Pareto-optimality, Transmit Signal Covariance Matrices,
Stiefel Manifolds

1. INTRODUCTION

Due to the importance of proper interference control in current and
future wireless systems, multi-user MIMO interference channels
have gained much interest from the research community recently.
One of the meaningful approaches to the interference channel prob-
lem is the game-theoretical approach which investigates Pareto-
optimality of coordinated beamforming in multi-user MIMO in-
terference channels. Many results are now available on efficient
parameterization and beam design for Pareto-optimal beamforming
in multiple-input single-output (MISO) interference channels [2–8].
It is known that for MISO interference channels, any Pareto-optimal
transmit beam vector at a transmitter is a normalized convex com-
bination of the zero-forcing beam and the matched-filtering beam
in the case of two users, and a linear combination of the channel
vectors from the transmitter to all receivers in the case of a general
number of users [2]. However, not many results are available on
the Pareto-optimal beam structure and design for MIMO interfer-
ence channels yet, although some results are available for limited
circumstances [9–11].

In this paper, we investigate the Pareto-optimal beamforming
problem in MIMO interference channels and provide a necessary
condition for Pareto-optimal beamformers for general MIMO inter-
ference channels. It is shown that any Pareto-optimal transmit signal
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covariance matrix at a transmitter should have its column space con-
tained in the union of the eigen-spaces of the channel matrices from
the transmitter to all receivers. Based on the obtained necessary
condition, an efficient parameterization for the beam search space
not losing Pareto-optimality is derived. The derived beam search
space or parameter space is given by a low dimensional submani-
fold embedded in the original high dimensional beam search space
and described by the product manifold of a Stiefel manifold and a
subset of a hyperplane. Furthermore, the dimension of the proposed
beam search space is independent of the number of transmit antennas
when the number of transmit antennas is large and thus the proposed
parameterization is very useful for coordinated beamforming in up-
coming wireless networks adopting massive MIMO technologies.

1.1. Notation

We will make use of standard notational conventions. Vectors and
matrices are written in boldface with matrices in capitals. All vectors
are column vectors. For a matrix A, AH , ‖A‖, tr(A), and |A| indi-
cate the Hermitian transpose, 2-norm, trace, and determinant of A,
respectively. C(A) denotes the column space of A and C⊥(A) de-
notes the orthogonal complement of C(A). For matrices A and B,
A < B means that A −B is positive semi-definite. Sn×n

+ denotes
the set of positive semi-defnite matrices of size n × n. In stands
for the identity matrix of size n (the subscript is omitted when un-
necessary). x ∼ CN (µ,Σ) means that x is circularly-symmetric
complex Gaussian-distributed with mean vector µ and covariance
matrix Σ.

2. SYSTEM MODEL

In this paper, we consider the K-pair Gaussian MIMO interference
channel where every transmitter is assumed to have N transmit an-
tennas and receiver i is assumed to have Mi (≥ 1) receive antennas.
We will call the considered MIMO interference channel the K-pair
Gaussian (N,M1, · · · ,MK) MIMO interference channel. The re-
ceived signal at receiver i is given by

yi = Hiisi +
∑K

j=1,j 6=i
Hijsj + ni, (1)

where Hij denotes the Mi × N channel matrix from transmitter j
to receiver i; sj is the N × 1 transmit signal vector generated from
a Gaussian codebook with distribution CN (0,Qj); and ni is the
additive noise vector from CN (0, I). The transmit signal covariance
matrix Qi := E{sis

H
i }, i = 1, · · · ,K, is selected from the feasible

set

Qi := {Q ∈ S
N×N
+ : tr(Q) ≤ Pi, 1 ≤ rank(Q) ≤ min{Mi, N}}.

(2)
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The rank constraint in (2) guarantees that the number of data streams
is between one and the maximum, min{Mi, N}.

For a given channel realization with single-user decoding re-
ceivers, i.e., with interference treated as noise, the achievable rate
region is defined as the union of rate tuples that can be achieved by
all possible combinations of transmit signal covariance matrices:

R :=
⋃

{Qi: Qi∈Qi,1≤i≤K}

(

R1(Q1, · · · ,QK), · · · , RK(Q1, · · · ,QK)
)

(3)

where

Ri(Q1, · · · ,QK)

= log2

∣

∣

∣
I+

(

I+
∑

j 6=i

HijQjH
H
ij

)−1

HiiQiH
H
ii

∣

∣

∣
(4)

for i = 1, · · · ,K. The outer boundary of the achievable rate region
R is called the Pareto boundary of R. The Pareto boundary con-
sists of rate-tuples for which the rate of one user cannot be increased
without decreasing the rate of at least one other user.

3. A NECESSARY CONDITION FOR
PARETO-OPTIMALITY

In this section, we present a necessary condition for Pareto-optimal
transmit covariance matrices for the K-pair Gaussian (N,M1, · · · ,
MK) MIMO interference channel with single-user decoding re-
ceivers, which is given in the following theorem.

Theorem 1 For the K-pair Gaussian (N,M1, · · · ,MK) MIMO
interference channel in which the channel matrices {Hij} are ran-
domly realized and interference is treated as noise at each receiver,
any Pareto-optimal transmit signal covariance matrix Q⋆

i at trans-
mitter i should satisfy

C(Q⋆
i ) ⊆ C([HH

1i, · · · ,H
H
Ki]) in all cases (5)

and
tr(Q⋆

i ) = Pi in the case that N ≥
∑K

i=1 Mi. (6)

Proof: We first consider the case of N ≥
∑K

i=1 Mi. Sup-
pose that [HH

1i, · · · ,H
H
Ki] ∈ C

N×
∑

i
Mi is of rank m (< N).

(When m = N , (5) holds trivially since C([HH
1i, · · · ,H

H
Ki]) =

C
N .) Then, there exists an orthonormal basis {ul}

N−m
l=1 that spans

C⊥([HH
1i, · · · ,H

H
Ki]):

C({ul}
N−m
l=1 ) = C⊥([HH

1i, · · · ,H
H
Ki]). (7)

Suppose that a set {Qi : i = 1, · · · ,K} of transmit covariance
matrices achieves a Pareto-boundary point of R and C(Qi) 6⊆
C([HH

1i, · · · ,H
H
Ki]) at transmitter i. Then, Qi is expressed as

Qi = [HH
1i, · · · ,H

H
Ki]Xi[H

H
1i, · · · ,H

H
Ki]

H+

N−m
∑

l=1

α
2
l ulu

H
l , (8)

where Xi < 0, tr(Qi) ≤ Pi, and α2
l = uH

l Qiul. C(Qi) 6⊆

C([HH
1i, · · · ,H

H
Ki]) implies α2

l 6= 0 for some l. Let î be such an
index and construct a transmit signal covariance matrix as

Q
′
i = Qi − α

2
î
uîu

H

î
. (9)

Then, tr(Q′
i) = tr(Qi)− α2

î
< tr(Qi) ≤ Pi and Q′

i < 0.1 Hence,
Q′

i is a valid transmit signal covariance matrix. Now, we consider
the rate-tuple achieved by {Q1, · · · ,Q

′
i, · · · ,QK}. For this, we

denote the interference covariance matrix at receiver i by

Φi := I+
∑

k 6=i
HikQkH

H
ik. (10)

Then, the rate at user i is given by

Ri(Q1, · · · ,Q
′
i, · · · ,QK)

= log2

∣

∣

∣
I+Φ

−1
i HiiQ

′
iH

H
ii

∣

∣

∣

= log2

∣

∣

∣
I+Φ

−1
i Hii(Qi − α

2
î
uîu

H

î
)HH

ii

∣

∣

∣

(a)
= log2

∣

∣

∣
I+Φ

−1
i HiiQiH

H
ii

∣

∣

∣

= Ri(Q1, · · · ,Qi, · · · ,QK), (11)

where (a) holds since uî ∈ C⊥([HH
1i, · · · ,H

H
Ki]) and hence

Hiiuî = 0. Similarly, the rate of user j ( 6= i) is given by

Rj(Q1, · · · ,Q
′
i, · · · ,QK)

= log2

∣

∣

∣
I+

(

I+
∑

k 6=j,k 6=i

HjkQkH
H
jk +HjiQ

′
iH

H
ji

)−1
HjjQjH

H
jj

∣

∣

∣

= log2

∣

∣

∣
I+

(

Φj − α
2
î
Hjiuîu

H

î
H

H
ji

)−1
HjjQjH

H
jj

∣

∣

∣

(b)
= log2

∣

∣

∣
I+Φ

−1
j HjjQjH

H
jj

∣

∣

∣

= Rj(Q1, · · · ,Qi, · · · ,QK), (12)

where (b) holds since uî ∈ C⊥([HH
1i, · · · ,H

H
Ki]). Thus, the rate-

tuple is unchanged with {Q1, · · · ,Q
′
i, · · · ,QK}.

Now, we construct another transmit covariance matrix Q′′
i as

Q
′′
i = Q

′
i + δvv

H (13)

where v satisfies Hiiv 6= 0 while Hjiv = 0 for all j 6= i, i.e., v ∈

C(HH
ii ) ∩

(

⋃

j 6=i
C(HH

ji)
)⊥

. Such v almost surely exists since the

event C(HH
ii ) ⊆

⋃

j 6=i

C(HH
ji) has measure zero for randomly realized

channel matrices. (Note that the dimension of
⋃

j 6=i

C(HH
ji) is at most

∑

j 6=i
Mj which is strictly less than N by the assumption

∑

i
Mi ≤

N .) Here, δ > 0 is chosen to be δ ≤ 1
tr(vvH)

(Pi − tr(Q′
i)) so that

tr(Q′′
i ) = tr(Q′

i + δvv
H) ≤ tr(Q′

i) + (Pi − tr(Q′
i)) = Pi. (14)

Denote the interference covariance matrix at receiver j with the set
{Q1, · · · ,Q

′
i, · · · ,QK} of transmit covariance matrices by

Ψj = I+
∑

k 6=j,k 6=i
HjkQkH

H
jk +HjiQ

′
iH

H
ji . (15)

1Q′
i < 0 can be shown by a similar argument to that in [12]. First,

by the definition of α
2
î

and the fact ||ul|| = 1, uH

î
Q′

iuî
= uH

î
(Qi −

α
2
î
u
î
uH

î
)u

î
= uH

î
Qiuî

− α
2
î
‖u

î
‖2 = 0. For any vector w such that

wHu
î
= 0, we have wHQ′

iw = wH(Qi −α
2
î
u
î
uH

î
)w = wHQiw ≥

0 since Qi is positive semi-definite. Because CN = C([HH
1i, · · · ,H

H
Ki

])⊕

C({ul}
N−m
l=1 ), Q′

i is positive semi-definite.
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Then, the rate of user j ( 6= i) achieved by {Q1, · · · ,Q
′′
i , · · · ,QK}

is given by

Rj(Q1, · · · ,Q
′′
i , · · · ,QK)

= log2

∣

∣

∣
I+

(

I+
∑

k 6=i,k 6=j

HjkQkH
H
jk +HjiQ

′′
i H

H
ji

)−1
HjjQjH

H
jj

∣

∣

∣

= log2

∣

∣

∣
I+

(

Ψj + δHjivv
H
H

H
ji

)−1
HjjQjH

H
jj

∣

∣

∣

(c)
= log2

∣

∣

∣
I+Ψ

−1
j HjjQjH

H
jj

∣

∣

∣

= Rj({Q1, · · · ,Q
′
i, · · · ,QK}), (16)

where (c) holds from the construction of v. On the other hand, the
rate of user i achieved by {Q1, · · · ,Q

′′
i , · · · ,QK} is given by

Ri({Q1, · · · ,Q
′′
i , · · · ,QK})

= log2
∣

∣I+Φ
−1
i HiiQ

′′
i H

H
ii

∣

∣

(d)
= log2

∣

∣Φi +HiiQ
′′
i H

H
ii

∣

∣− log2
∣

∣Φi

∣

∣

= log2
∣

∣Φi +Hii(Q
′
i + δvv

H)HH
ii

∣

∣− log2
∣

∣Φi

∣

∣

(e)
> log2

∣

∣Φi +HiiQ
′
iH

H
ii

∣

∣− log2
∣

∣Φi

∣

∣

= log2

∣

∣

∣
I+Φ

−1
i HiiQ

′
iH

H
ii

∣

∣

∣

= Ri({Q1, · · · ,Q
′
i, · · · ,QK}), (17)

where (d) follows from the fact of |I + A−1B| = |A−1||A + B|
and (e) holds by Lemma 1. Based on (11), (12), (16), and (17), we
have

Ri({Q1, · · · ,Q
′′
i , · · · ,QK}) > Ri({Q1, · · · ,Qi, · · · ,QK}),

Rj({Q1, · · · ,Q
′′
i , · · · ,QK}) = Rj({Q1, · · · ,Qi, · · · ,QK})

(18)

for all j 6= i, and this contradicts our assumption of Pareto-
optimality of {Q1, · · · ,Qi, · · · ,QK}. Therefore, C(Qi) ⊆
C([HH

1i, · · · ,H
H
Ki]) for the K-pair Gaussian (N,M1, · · · ,MK)

MIMO interference channel.
Next, suppose that Qi satisfies (5) but tr(Qi) < Pi. When N ≥

∑

i
Mi, there almost surely exists a vector v such that Hiiv 6= 0

and Hjiv = 0 for all j 6= i by the same argument as before. Now,
let

Q̄i = Qi + δ̄vv
H
, (19)

where δ̄ is set to be δ̄ = 1
tr(vvH )

(Pi − tr(Qi)) so that tr(Q̄i) =

Pi. Then, the rate of receiver j ( 6= i) does not change as in (16)
whereas the rate of receiver i increases by the same argument as in
(17). Hence, when N ≥

∑

i
Mi, each transmitter should use its

maximum transmit power for Pareto-optimality.
Finally, when N <

∑K

i=1 Mi, C([HH
1i, · · · ,H

H
Ki]) = C

N for
randomly realized channel matrices and (5) holds trivially. �

Lemma 1 Under the same conditions as in Theorem 1, we have

log
∣

∣Φi +Hii(Q
′
i + δvv

H)HH
ii

∣

∣ > log
∣

∣Φi +HiiQ
′
iH

H
ii

∣

∣. (20)

Proof: First, by taking the difference of the two matrices
(

Φi +Hii(Q
′
i + δvv

H)HH
ii

)

−
(

Φi +HiiQ
′
iH

H
ii

)

= δHiivv
H
H

H
ii < 0,

we can see that Φi + Hii(Q
′
i + δvvH)HH

ii < Φi + HiiQ
′
iH

H
ii .

This implies [13, p.471],

λ
′′
k ≥ λ

′
k > 0, ∀ k. (21)

where λ′′
k and λ′

k are the k-th largest eigenvalues of Φi +Hii(Q
′
i +

δvvH)HH
ii and Φi +HiiQ

′
iH

H
ii , respectively. The strict positivity

of the eigenvalues is from the strict positive definiteness of the two
matrices because of the added identity matrix in Φi. Next, consider
the difference of the traces of the two matrices:

tr
(

Φi +Hii(Q
′
i + δvv

H)HH
ii

)

− tr
(

Φi +HiiQ
′
iH

H
ii

)

= δtr
(

Hiivv
H
H

H
ii

)

= δ||Hiiv||
2
> 0, (22)

where (22) holds since Hiiv 6= 0 by the construction of v. From
(21) and (22), at least one eigenvalue λ′′

k is strictly larger than λ′
k

since the trace of a matrix is the sum of its eigenvalues. Therefore,
we have

∏Mi

k=1 λ
′′
k >

∏Mi

k=1 λ
′
k

⇔ |Φi +Hii(Q
′
i + δvv

H)HH
ii | > |Φi +HiiQ

′
iH

H
ii |. (23)

Finally, (20) holds by the monotonicity of logarithm. �

Note that in the case of Mi = 1 for all i, Theorem 1 reduces to
the statement that any Pareto-optimal beam vector is a linear combi-
nation of the (complex conjugated) channel vectors from the trans-
mitter to all receivers. Thus, the result in Theorem 1 is a MIMO
extension of the result for Pareto-optimal coordinated beamforming
in MISO interference channels by Jorswieck et al. [2].

4. PARAMETERIZATION FOR PARETO-OPTIMAL
TRANSMIT SIGNAL COVARIANCE MATRICES

In this section, we provide a concrete parameterization for Pareto-
optimal transmit signal covariance matrices based on Theorem 1.
We mainly consider the case when N ≥

∑K

i=1 Mi, even though the
result in this section can be applied to N <

∑K

i=1 Mi.
Due to (5), any Pareto-optimal transmit signal covariance matrix

Q⋆
i can be expressed as

Q
⋆
i = [HH

1i, · · · ,H
H
Ki]Xi[H

H
1i, · · · ,H

H
Ki]

H
, (24)

where Xi ∈ S
(
∑

i
Mi)×(

∑
i
Mi)

+ with rank less than or equal to Mi.
Note that the matrix [HH

1i, · · · ,H
H
Ki] has size N × (

∑

i
Mi) and

it has full column rank almost surely for randomly realized channel
matrices. Let the skinny QR factorization of [HH

1i, · · · ,H
H
Ki] be

[HH
1i, · · · ,H

H
Ki] = ΥiRi, (25)

where Υi is a N×
∑

i
Mi matrix with orthonormal columns and Ri

is an upper triangular matrix with size (
∑

i
Mi) × (

∑

i
Mi). With

(25), the condition (5) can be rewritten as

Q
⋆
i = ΥiX

′
iΥ

H
i , (26)

where X′
i ∈ S

(
∑

i
Mi)×(

∑
i
Mi)

+ with rank less than or equal to Mi.
Since X′

i is Hermitian, its spectral decomposition is given by

X
′
i = UiΛiU

H
i , (27)
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where Ui is a (
∑

i
Mi)×Mi matrix with orthonormal columns and

Λi = diag(λi1, · · · , λiMi
) is a Mi ×Mi diagonal matrix with non-

negative diagonal elements. Therefore, any Pareto-optimal transmit
signal covariance matrix Q⋆

i can be expressed by

Q
⋆
i = ΥiUiΛiU

H
i Υ

H
i , (28)

which turns out to be a spectral decomposition of Q⋆
i since (ΥiUi)

H

(ΥiUi) = I and Λi is diagonal. Note that Υi is given and fixed
when the channel matrices are given. Furthermore, in the case of
N ≥

∑

i
Mi, we have the full power condition (6). The full power

condition is expressed by

Pi = tr(Q⋆
i ) = tr(ΥiUiΛiU

H
i Υ

H
i )

= tr(ΛiU
H
i Υ

H
i ΥiUi), (ΥiUi)

H(ΥiUi) = I

= tr(Λi) =
∑Mi

k=1 λik, (29)

where λik ≥ 0 for all k. Thus, any Pareto-optimal transmit signal
covariance matrix can be parameterized by Ui and Λi with respec-
tive constraints of UH

i Ui = I and tr(Λi) = Pi. Here, Ui’s with
constraint UH

i Ui = I form a special subset in C
(
∑

i
Mi)×Mi called

the Stiefel manifold V∑
i
Mi,Mi

[14]. We summarize the result in the
following theorem.

Theorem 2 Any Pareto-optimal transmit signal covariance matrix
at transmitter i for the K-pair Gaussian (N,M1, · · · ,MK) MIMO
interference channel with N ≥

∑

i
Mi is parameterized by the

product manifold Mi:

Mi := V∑
i
Mi,Mi

×HMi
, (30)

where V∑
i
Mi,Mi

is the Stiefel manifold of orthonormal Mi-frames
in C

∑
i
Mi and HMi

is a subset in the first quadrant of a hyperplane
in the Euclidean space R

Mi defined by

HMi
:= {(λ1, · · · , λMi

) : λi ≥ 0 and
∑

i
λi = Pi}. (31)

Proof: Combining Theorem 1 and equations (26), (27), (28) and
(29), we have the result. �

Note that the new beam search space or parameter space Mi is an
embedded submanifold of the original beam search space Qi. The
main advantage of the parameterization in Theorem 2 is that the di-
mension of the parameter space does not depend on the number of
transmit antennas but only on the number of receive antennas, while
Pareto-optimality is not lost. The proposed parameterization sig-
nificantly reduces the search space dimension as compared to the
original search space Qi when N ≫

∑

i
Mi, and thus the proposed

parameterization is useful for emerging cellular downlink systems
with massive MIMO technologies [15,16]. Furthermore, the param-
eterization in Theorem 2 enables us to construct efficient beam de-
sign algorithms by exploiting the rich geometrical structure of Stiefel
manifolds and hyperplanes. (For the advantages of the proposed pa-
rameterization, please see [1].)

5. NUMERICAL RESULTS

In this section, we provide some numerical results based on the re-
sults in the previous section. We considered the weighted sum rate
maximization problem in the K-pair Gaussian (N,M1, · · · ,MK)
MIMO interference channel, given by

max
{(Ui,Λi)}

∑K

i=1 wiRi, (32)

where the optimization variables are the matrices {Ui} with or-
thonormal columns and the diagonal power loading matrices {Λi}
in Theorem 2. We developed an efficient algorithm to solve the
weighted sum rate maximization problem by exploiting the geo-
metrical properties of Stiefel manifolds [1] and applied the algo-
rithm to the 2-pair case. The result is shown in Fig. 1. Here, we
considered the 2-pair Gaussian (5, 2, 2) MIMO interference chan-
nel with SNR=3dB. In this example, the beam design space with
our new parameterization is the product of a stiefel manifold V4,2

(4 × 2 unitary matrices) and an 1-dimensional hyperplane (line),
whereas the convential beam search space is the set of 5×5 positive-
semidefinite matrices. The obtained rate-tuples by the proposed al-
gorithm with different weighting factors and the rate-tuples by eigen-
beamforming (SVD based beamforming) and zero-forcing beam-
forming are shown in the figure. Although we cannot guarantee that
the obtained rate-tuples are on the Pareto boundary of the achiev-
able rate region (the derived condition is a necessary condition), the
rate-tuples obtained by a beam design algorithm based on the pro-
posed parameterization M1 × M2 are much more likely to be on
the Pareto boundary than those obtained by a beam design algorithm
based on the original high dimensional search space Q1 ×Q2. This
is because local optima and peculiar behaviors are more likely to
happen in higher dimensional spaces. (For detail on the beam design
algorithm with the proposed parameterization, please see [1].)
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]

 

 

Weighted sum rate maximization
Eigen−beamforming
Zero−forcing beamforming

Fig. 1. Weighted sum rate maximization for the 2-pair Gaussian
(5, 2, 2) MIMO interference channel.

6. CONCLUSION

In this paper, we have provided a necessary condition for Pareto-
optimal transmit signal covariance matrices in the K-pair Gaussian
(N,M1, · · · ,MK) MIMO interference channel and a parameteriza-
tion for the beam search space not losing Pareto-optimality. The pro-
posed parameter space is given by an embedded submanifold of the
original beam search space and described by the product manifold
of a Stiefel manifold and a subset of a hyperplane. The proposed
parameterization is especially useful when the number of transmit
antennas is much larger than that of receive antennas, as in upcom-
ing cellular networks adopting massive MIMO technologies.
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