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ABSTRACT

This paper studies the achievable rate region of the K-user
Gaussian multiple-input single-output interference channel
(MISO-IC) with interference treated as noise, when improper
or circularly asymmetric complex Gaussian signaling is
applied. By exploiting the separable rate expression with
improper Gaussian signaling, we propose a separate covari-
ance and pseudo-covariance optimization algorithm, which is
guaranteed to improve the users’ rates over the conventional
proper or circularly symmetric complex Gaussian signaling.
In particular, for the pseudo-covariance optimization, the
semidefinite relaxation (SDR) technique is applied to provide
a high-quality approximate solution. For the special case of
two-user MISO-IC, the SDR technique yields the optimal
pseudo-covariance solution.

Index Terms— Improper Gaussian signaling, MISO-IC,
pseudo-covariance, semidefinite relaxation.

1. INTRODUCTION

The information-theoretical capacity of the general interfer-
ence channel (IC) is a long-standing open problem [1]. Prac-
tically, a great deal of research on Gaussian ICs has focused
on characterizing the achievable rate regions [2–9], under the
assumption of employing single-user decoding (SUD) with
the interference treated as noise at receivers. In particular,
for the multiple-input single-output Gaussian IC (MISO-IC),
all the Pareto-optimal rate-tuples can be achieved with beam-
forming, i.e., with rank-1 transmit covariance matrices [7–9].

The aforementioned works have all assumed proper or
circularly symmetric complex Gaussian signaling. Howev-
er, it was revealed in [10] that the more general improper or
circularly asymmetric complex Gaussian signaling, together
with symbol extension and interference alignment (IA), is
able to improve the achievable degrees of freedom (DoF) for
the sum-rate of a three-user single-input single-output Gaus-
sian IC (SISO-IC). Later, it was shown in [11,12] that even for
the two-user SISO-IC where IA is not applicable, the achiev-
able rate region can still be enlarged with improper over prop-
er Gaussian signaling. In [13], we have shown that with im-
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proper Gaussian signaling, the user’s achievable rate in the
general multiple-input multiple-output Gaussian IC (MIMO-
IC) can be expressed as the summation of the rate achiev-
able by the conventional proper Gaussian signaling, which de-
pends on the users’ transmit covariance matrices only, and an
additional term, which is a function of both the covariance and
pseudo-covariance matrices. Such a separable rate structure
was exploited in [13] to optimize the covariance and pseudo-
covariance separately so that the obtained improper Gaussian
signaling strictly outperforms the conventional proper Gaus-
sian signaling. However, the algorithm proposed in [13] is for
the two-user SISO-IC and cannot be applied when there are
more than two users and/or multiple transmitting antennas.
This thus motivates our current work that extends the result
in [13] to the more general K-user MISO-IC.

Similar to [7], we apply the rate-profile technique to char-
acterize the achievable rate region of the MISO-IC with the
interference treated as noise. However, unlike the case with
proper Gaussian signaling, the resulting optimization problem
with improper Gaussian signaling is non-convex and hence
difficult to be solved optimally. By adopting a similar sepa-
rate covariance and pseudo-covariance optimization approach
as in [13], we develop an efficient algorithm that first solves
the covariance optimization optimally and then the pseudo-
covariance optimization approximately based on the celebrat-
ed semidefinite relaxation (SDR) technique [14]. For the spe-
cial case of two-user MISO-IC, the SDR based solution is
optimal for the pseudo-covariance optimization.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

This paper considers a K-user MISO-IC, where each trans-
mitter is equipped with M antennas and each receiver with
one single antenna. All transmitters send independent infor-
mation to their respective receivers at the same time and over
the same frequency band, thus potentially interfering with
each other at the receivers. The received baseband discrete-
time signal for user k is given by

yk = hkkxk +
∑
j 6=k

hkjxj + nk, k = 1, · · · ,K, (1)
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where hkk ∈ C1×M denotes the direct channel from transmit-
ter k to receiver k, while hkj , j 6= k, denotes the interference
channel from transmitter j to receiver k; nk represents the
circularly symmetric complex Gaussian (CSCG) noise with
zero mean and variance σ2, denoted by nk ∼ CN (0, σ2); and
xk ∈ CM×1 is the transmitted signal vector from transmitter
k. Unlike the conventional proper Gaussian signaling, this pa-
per considers the more general improper Gaussian signaling
at the transmitters. For background knowledge of improp-
er (Gaussian) random vectors (RVs), the readers may refer
to [13] and references therein. Given a zero-mean RV xk, we
denote its covariance and pseudo-covariance matrices as Cxk

and C̃xk
, respectively, as follows:

Cxk
, E{xkxHk }, C̃xk

, E{xkxTk }, (2)

where (·)H and (·)T denote Hermitian transpose and trans-
pose, respectively. For the conventional proper Gaussian
signaling, the pseudo-covariance matrices for all transmitters
C̃xk

’s are set to zero matrices, and thus are not included for
the transmit optimization. However, for the more general im-
proper Gaussian signaling, the additional degrees of freedom
given by the pseudo-covariance matrices provide a further
opportunity for rate maximization. Cxk

and C̃xk
are a valid

pair of covariance and pseudo-covariance matrices if and only
if their corresponding augmented covariance matrix Cxk

is
positive semidefinite [15], i.e.,

Cxk
,

[
Cxk

C̃xk

C̃∗xk
C∗xk

]
� 0, (3)

where (·)∗ denotes the complex conjugate. For the MISO-
IC with single-antenna receivers, the covariance and pseudo-
covariance of the received signal yk can be written as

Cyk =

K∑
j=1

hkjCxj
hHkj + σ2, C̃yk =

K∑
j=1

hkjC̃xj
hTkj . (4)

Denote the interference-plus-noise term at receiver k by sk,
i.e., sk =

∑
j 6=k hkjxj + nk. Then we have

Csk =
∑
j 6=k

hkjCxj
hHkj + σ2, C̃sk =

∑
j 6=k

hkjC̃xj
hTkj . (5)

Under the assumptions of Gaussian inputs and that the inter-
ference is treated as Gaussian noise at receivers, and by ap-
plying the result in [13] to the MISO-IC setup, the achievable
rate at receiver k can be expressed as

Rk = log

(
1 +

hkkCxk
hHkk

σ2 +
∑
j 6=k hkjCxj

hHkj

)
︸ ︷︷ ︸

,Rproper
k ({Cxj

})

+
1

2
log

1− C−2yk |C̃yk |
2

1− C−2sk |C̃sk |2
. (6)

It is observed from (6) that with improper Gaussian signal-
ing, each user’s achievable rate is a summation of the rate
achievable by the conventional proper Gaussian signaling, de-
noted by Rproper

k ({Cxj
}), and an additional term, which is a

function of both the users’ transmit covariance and pseudo-
covariance matrices. Therefore, for a given set of transmit
covariance matrices obtained by any proper Gaussian signal-
ing scheme, the achievable rates in MISO-IC can be improved
with improper Gaussian signaling by choosing the pseudo-
covariance matrices that make the second term in (6) strictly
positive. The achievable rate regionR for the K-user MISO-
IC is defined as the set of rate-tuples that can be simultaneous-
ly achieved by all users under a given set of transmit power
constraints for each transmitter, denoted by Pk, k = 1, ...,K.
With Rk given in (6), we thus have

R ,
⋃

Tr{Cxk
}≤Pk,

Cxk
�0,∀k

{
(r1, · · · , rK) : 0 ≤ rk ≤ Rk,∀k

}
,

where the constraint Cxk
� 0 follows from (3). To char-

acterize the Pareto boundary of R, we adopt the rate-profile
method as in [7]. Specifically, any Pareto-optimal rate-tuple
on the boundary of the rate region can be obtained by solving
the following optimization problem with a given rate-profile
vector denoted by α= (α1 · · ·αK).

(P1): max
{Cxk

},{C̃xk
},R
R

s.t. Rk ≥ αkR, ∀k,
Tr{Cxk

} ≤ Pk, ∀k,[
Cxk

C̃xk

C̃∗xk
C∗xk

]
� 0, ∀k,

where αk denotes the target ratio between user k’s achievable
rate and the users’ sum-rate, R. Without loss of generality,
we assume that αk > 0,∀k, and

∑K
k=1 αk = 1. Denote

the optimal value of (P1) as R?. Then the rate-tuple R?· α
must be on the Pareto boundary corresponding to the rate-
profile given by α. Thereby, by solving (P1) with different
rate-profile vectors of α, the complete Pareto boundary of R
can be found [7].

3. SEPARATE COVARIANCE AND
PSEUDO-COVARIANCE OPTIMIZATION

(P1) is a non-convex optimization problem, and thus it is diffi-
cult to achieve the global optimum efficiently. In this section,
we propose a separate covariance and pseudo-covariance op-
timization algorithm by utilizing the rate expression given in
(6) to obtain an efficient suboptimal solution for (P1).
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3.1. Covariance Optimization

When restricted to proper Gaussian signaling by setting
C̃xk

= 0,∀k, (P1) reduces to

(P1.1): max
r,{Cxk

}
r

s.t. log

(
1 +

hkkCxk
hHkk

σ2 +
∑
j 6=k hkjCxj

hHkj

)
≥ αkr, ∀k,

Tr{Cxk
} ≤ Pk, Cxk

� 0, ∀k.

Denote the optimal value of (P1.1) as r?, then the rate-tuple
r? ·α is on the Pareto boundary of the achievable rate region
with proper Gaussian signaling. It has been shown in [7–9]
that all the Pareto-optimal rate-tuples with proper Gaussian
signaling can be achieved by transmit beamforming, i.e., with
rank-1 transmit covariance matrices. Therefore, without loss
of optimality for (P1.1), we can assume

Cxk
= tkt

H
k , ∀k, (7)

where tk is the transmit beamforming vector for user k. Then
for any fixed target rate r, the feasibility problem related to
(P1.1) can be formulated as

(P1.2): Find {tk}

s.t. σ2 +

K∑
j=1

|hkjtj |2 ≤
(
1 +

1

eαkr − 1

)
(hkktk)

2, ∀k,

={hkktk} = 0, ‖tk‖2 ≤ Pk, ∀k,

where without loss of generality, we have assumed that for
all k, hkktk is a nonnegative real number [16]. (P1.2) is
a second-order cone programming (SOCP) problem, which
can be efficiently solved [17]. Then (P1.1) can be optimally
solved by iteratively solving (P1.2) with different values of r,
and applying a bisection search over r [17].

3.2. Pseudo-Covariance Optimization

Denote the optimal solution to (P1.1) by {r?,C?
xk

= tkt
H
k }.

By fixing the transmit covariance matrices as {C?
xk

= tkt
H
k },

(P1) is further optimized over the pseudo-covariance matrices
{C̃xk

}. The resulting problem is

(P1.3): max
R,{C̃xk

}
R

s.t. αkr? +
1

2
log

1− C−2yk |C̃yk |
2

1− C−2sk |C̃sk |2
≥ αkR, ∀k,[

tkt
H
k C̃xk

C̃∗xk
(tkt

H
k )∗

]
� 0, ∀k, (8)

whereCyk andCsk are fixed covariances given the previously
optimized transmit covariance matrices {C?

xk
}. (P1.3) can be

equivalently written as a minimum-weighted-rate maximiza-
tion (MinWR-Max) problem as follows.

(P1.4): max
{C̃xk

}
min

k=1,··· ,K

1

2αk
log

1− C−2yk |C̃yk |
2

1− C−2sk |C̃sk |2

s.t.
[
tkt

H
k C̃xk

C̃∗xk
(tkt

H
k )∗

]
� 0, ∀k. (9)

Lemma 1. The positive semidefinite constraint in (9) is sat-
isfied if and only if

C̃xk
= Zkt̃kt̃

T
k , k = 1, · · · ,K, (10)

where Zk is a complex scalar variable with constraint |Zk| ≤
‖tk‖2, and t̃k = tk/‖tk‖.

The proof is omitted due to the space limitation. Lemma 1
shows the optimality of rank-1 pseudo-covariance matrices if
rank-1 transmit covariance matrices are applied. By substitut-
ing (10) into (4), we have

C̃yk =

K∑
j=1

(hkj t̃j)
2Zj , ∀k. (11)

By defining mk , C−1yk
[
(hk1t̃1)

2 · · · (hkK t̃K)2
]H

, z ,[
Z1 · · · ZK

]T
, we have

C−2yk
∣∣C̃yk ∣∣2 = |mH

k z|2 = zHMkz, (12)

where Mk = mkm
H
k . Similarly, by defining wk , C−1sk[

· · · (hk(k−1)t̃k−1)
2 0 (hk(k+1)t̃k+1)

2 · · ·
]H

, then

C−2sk |C̃sk |
2 = |wH

k z|2 = zHWkz, (13)

where Wk = wkw
H
k . Therefore, (P1.4) can be written as

(P1.5): max
z∈CK

min
k=1,··· ,K

1

2αk
log

1− zHMkz

1− zHWkz

s.t. |eHk z|2 ≤
∥∥tk∥∥4, ∀k, (14)

where ek is a unit vector where the kth entry is one and all
the other entries are zero. Next, we show that an approximate
solution to (P1.5) can be obtained by applying the SDR tech-
nique [14]. With the identity xHAx = Tr(AxxH), the SDR
problem of (P1.5) is given by

(P1.5-SDR): max
Z�0

min
k=1,··· ,K

1

2αk
log

1− Tr(MkZ)

1− Tr(WkZ)

s.t. Tr(EkZ) ≤
∥∥tk∥∥4, ∀k, (15)

where Ek = eke
H
k . It is easy to see that (P1.5) is equivalent

to (P1.5-SDR) with the additional constraint rank(Z) = 1,
in which case Z can be written as Z = zzH . Therefore, the
optimal value of (P1.5-SDR), τsdr, provides an upper bound
on that of (P1.5). Since Z = 0 is feasible for (P1.5-SDR), we
have τsdr ≥ 0.
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Theorem 1. For any matrix Z that is feasible to (P1.5-SDR),
the following inequalities hold:

1− Tr(WkZ) > 0, 1− Tr(MkZ) > 0, ∀k. (16)

The proof is omitted due to the space limitation. With
Theorem 1 and given τsdr ≥ 0, it can be shown that (P1.5-
SDR) is a quasi-convex problem [17]. For any given τ , con-
sider the following problem.

(P1.6): min
Z�0

Tr(E1Z)

s.t. 1− Tr(MkZ) ≥ e2αkτ (1− Tr(WkZ)), ∀k,

Tr(EkZ) ≤
∥∥tk∥∥4, k = 2, · · · ,K.

(P1.6) is a semidefinite programming (SDP) problem, which
minimizes the left hand side (LHS) of (15) corresponding to
k = 1. Denote the optimal value of (P1.6) as f(τ). If f(τ) ≤
‖t1‖4, then τsdr ≥ τ ; otherwise, τsdr < τ . Therefore, (P1.5-
SDR) can be optimally solved by solving (P1.6) together with
a bisection search over τ .

Denote the solution to (P1.5-SDR) by Z?. If rank(Z?) =
1, i.e., Z? = zzH , then z is the optimal solution to (P1.5).
In this case, SDR is tight; otherwise, we apply the following
Gaussian randomization procedure customized to our case to
find an approximate solution to (P1.5) [14]:

Algorithm 1 Gaussian Randomization Procedure for (P1.5)
Input: The solution Z? to (P1.5-SDR) and the number of
randomizations L.

1: for l = 1, · · · , L do
2: Generate ξl ∼ CN (0,Z?), and construct a feasible

point zl to (P1.5) as follows:

[zl]k = κk[ξl]k,with κk = min
{
1,
‖tk‖2

|[ξl]k|

}
,∀k,

where [·]k is the kth entry.
3: end for
4: determine l? = arg max

l=1,··· ,L
min

k=1,··· ,K
1

2αk
log

1−zH
l Mkzl

1−zH
l Wkzl

Output: ẑ = zl? as an approximate solution for (P1.5).

It is worth noting that when K = 2, (P1.6) is a complex-
valued SDP problem with three linear constraints. It is known
that if such a problem is feasible, there is always a rank-1
solution [18]. Therefore, for K = 2, the pseudo-covariance
subproblem (P1.3) is optimally solved.

4. NUMERICAL RESULTS

In this section, we assume that all the transmitters have the
same power constraint P , i.e., Pk = P, ∀k. The average
signal-to-noise ratio (SNR) is defined as P/σ2. For Algo-
rithm 1, L = 1000 is used. The channel coefficients are
generated from the independent and identically distributed

Table 1: Mean and standard deviation (std) of the ratio τsdr/τ̂ .
K 2 3 4 5 6

M = 1
mean 1.0 1.032 1.138 1.267 1.391
std 0 0.092 0.245 0.350 0.441

M = 2
mean 1.0 1.012 1.162 1.401 1.640
std 0 0.068 0.388 0.621 0.691

Fig. 1: Average max-min rate with K = 3 and M = 2.

(i.i.d.) CSCG random variables with zero-mean and unit-
variance. Denote τ̂ as the objective value of (P1.5) with ẑ
obtained by Algorithm 1. We first evaluate the ratio τ sdr/τ̂ ,
which gives an upper bound for the true approximation ratio
τ?/τ̂ . In particular, if τ sdr/τ̂ = 1, then the obtained SDR-
based solution is optimal. We consider the maximum of the
minimum (max-min) achievable rates of all users by setting
the rate-profile in (P1) as α = 1/K1, where 1 is an all-one
vector. Table 1 summarizes the mean and the standard devia-
tion of the ratio τsdr/τ̂ at SNR = 10 dB with different pairs of
values for M and K, based on simulation results over 1000
random channel realizations. It is observed that for all the
setups considered, the mean values of the ratios are between
1 and 1.64, which demonstrates the high-quality approximate
solution by the SDR technique.

The max-min rates obtained with the optimal proper
and the proposed improper Gaussian signaling are plotted in
Fig. 1. It is observed that a significant gain is achieved by the
proposed scheme due to the pseudo-covariance optimization.

5. CONCLUSION

This paper studies the transmit optimization for the K-user
MISO-IC with interference treated as Gaussian noise. By
exploiting the separable achievable rate structure by im-
proper Gaussian signaling, a separate transmit covariance
and pseudo-covariance optimization algorithm is proposed.
For the pseudo-covariance optimization subproblem, an ap-
proximate solution is obtained based on the SDR technique.
Simulation results show the promising rate improvement by
the proposed improper Gaussian signaling design over the
conventional proper signaling counterpart for the Gaussian
MISO-IC.
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