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ABSTRACT

In this paper, we study the maximal achievable degrees of free-
dom (DoF) forG-cell,K-userM×N symmetric multi-input-multi-
output (MIMO) interference broadcast channel (MIMO-IBC) with
constant coefficients by linear interference alignment (IA). We start
by analyzing the sufficient and necessary conditions of the IA fea-
sibility, which are associated with generalized Fibonacci sequences.
Except for the well-known proper condition, we find another con-
dition necessary to ensure a kind of irreducible interference to be
eliminated, denoted as irreducible condition. We proceed to find the
minimal number of antennas at each base station and each user to
support a required number of interference-free data streams, from
which we obtain the maximal achievable DoF. We find that the fea-
sibility conditions in terms of the required antenna resources can be
divided into two regions according the ratio of ρ = M/N . If ρ falls
into the region that characterized by the proper condition, the achiev-
able DoF per user with spatial extension is (M + N)/(GK + 1).
If ρ lies in the region that characterized by the irreducible condition,
the DoF is a piecewise linear function of M or N alternately.

Index Terms— Interference alignment (IA), interference broad-
cast channel (IBC), degrees of freedom (DoF), IA feasibility condi-
tions, irreducible interference

1. INTRODUCTION
The degrees of freedom (DoF) is a metric of great importance that
reflects the potential of communication systems [1]. To derive the
maximum DoF for multi-input-multi-output (MIMO) interference
broadcast channel (MIMO-IBC) and MIMO interference channel
(MIMO-IC) achieved by linear interference alignment (IA), many
recent research devote to investigate the IA feasibility conditions.

For the MIMO-IC with constant coefficients (i.e., without
time/frequency extension), a proper condition was first proposed
in [2] by relating the linear IA feasibility to the problem of de-
termining the solvability of a system of multivariate polynomial
equations. So far, for a G-cell MIMO-IC where each base station
(BS) is equipped with M antennas and each user has N antennas,
the linear IA feasibility is well understood for some special cases,
i.e., M = N [3], either M or N is divisible by the number of
data streams per user d [4], and G = 3 [1, 5]. For the MIMO-IC
with time/frequency varying channels, (i.e., with time/frequency
extension), the feasibility conditions are available for G = 3 [1],
but remain unknown for some cases of G ≥ 4 [6]. For a G-cell
K-userM ×N MIMO-IBC with constant coefficients, the linear IA
feasibility was analyzed for the cases where M or N is divisible by
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d [7]. Yet the feasibility analysis of linear IA for general symmetry
MIMO-IC and MIMO-IBC is still an open problem.

In this paper, we strive to find the maximal DoF for general sym-
metric MIMO-IBC with constant coefficients achieved by linear IA.
To this end, we first find the sufficient and necessary conditions of
IA feasibility. Then, we investigate the minimal spatial resources re-
quired to transmit a given number of data streams without inter-cell
interference (ICI) and multi-user interference, from which we obtain
the maximal achievable DoF per user. Our study shows that except
for the proper condition, the feasibility conditions also include an ir-
reducible condition, which is comprised of a series of inequalities to
ensure a sort of irreducible ICI to be eliminated. The irreducible ICI
was defined in [7] as the ICIs whose dimensions cannot be reduced
by designing the receive or transmit matrices. Based on the different
impacts of the proper condition and the irreducible condition, the D-
oF can be divided into two regions according to the ratio of M/N .
If M/N falls into the region that characterized by the proper condi-
tion, the BSs and users can share their spatial resources to remove
the ICI, and the achievable DoF per user with spatial extension is
(M + N)/(GK + 1). Otherwise, owing to the irreducible ICI, the
BSs and users cannot eliminate ICI by sharing spatial resources, and
the DoF is piecewise linear dependent on either M or N .

2. MAIN RESULTS

In this section, we first present the necessary and sufficient condi-
tions of linear IA feasibility for symmetric MIMO-IBC, then derive
and analyze the maximal achievable DoF. Due to the lack of space,
we will not provide the proof, which can be found in [8] and checked
by a test proposed in [9].

2.1. Necessary and Sufficient Conditions of IA feasibility

Theorem 1. For a symmetric MIMO-IBC with generic channel ma-
trices, the linear IA is feasible iff (if and only if) the following con-
ditions are satisfied,

M +N ≥ (GK + 1)d (1a)
max{pM, qN} ≥ (pK + q)d, ∀(p, q) ∈ A ∪ B (1b)

where A ,
{(
pAn , q

A
n

)}
and B ,

{(
pBn , q

B
n

)}
are interleaving

generalized Fibonacci sequence-pairs satisfying,{
pA2n = (G− 1)pA2n−1 − pA2n−2, p

A
2n+1 = (G− 1)KpA2n − pA2n−1

qA2n = (G− 1)qA2n−1 − qA2n−2, q
A
2n+1 = (G− 1)KqA2n − qA2n−1{

pB2n = (G− 1)KpB2n−1 − pB2n−2, p
B
2n+1 = (G− 1)pB2n − pB2n−1

qB2n = (G− 1)KqB2n−1 − qB2n−2, q
B
2n+1 = (G− 1)qB2n − qB2n−1

pAn , q
A
n , p

B
n , q

B
n ≥ 0, ∀n ∈ Z+, the set of positive integers, (2)
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and (pA0 , q
A
0 ) = (0, 1), (pA1 , q

A
1 ) = (1, (G − 1)K), (pB0 , q

B
0 ) =

(1, 0), (pB1 , q
B
1 ) = (G− 1, 1).

(1a) is the proper condition for symmetric MIMO-IBC [2]. It
ensures that there are enough antennas in the network to eliminate
all the ICI.

(1b) contains a series of inequalities. Substituting (pA0 , q
A
0 ) =

(0, 1) and (pB0 , q
B
0 ) = (1, 0) into (1b), we obtain N ≥ d and

M ≥ Kd, which ensure that there are enough antennas to convey
desired signals. Substituting (pA1 , q

A
1 ) and (pB1 , q

B
1 ) into (1b), we

have max{M, (G− 1)KN} ≥ GKd and max{(G− 1)M,N} ≥
((G − 1)K + 1)d, which was provided in [7] to ensure one class
of irreducible ICIs to be eliminated. Substituting other values of
pAn , q

A
n , p

B
n , q

B
n in (2) into (1b), the resulting inequalities ensure oth-

er class of irreducible ICIs to be eliminated. Therefore, (1b) is called
as irreducible condition.

2.2. Minimal Antenna Resource and Maximal Achievable DoF
The sequences in (2) are finite with length no more than six when
G = 2, K < 4, and are always infinite otherwise. When the se-
quences are finite, we can derive the achievable DoF by enumerating
all inequalities in (1b) and considering (1a). When the sequences are
infinite, however, we need to find other way to derive the DoF. In the
sequel, we consider the cases where G = 2, K ≥ 4 or G ≥ 3.1 To
understand the impact of (1b) on the achievable DoF, we list some
values of {pαn} and {qαn}, α = A,B in (2) in Table 1.

Remark 1. In three-cell MIMO-IC, i.e., G = 3, K = 1, we have
pAn = qBn = n and qAn = pBn = n+1, i.e., the generalized Fibonacci
sequence reduces to the arithmetic sequence. All the sequences are
monotonic and have explicit expressions, which allows us to analyze
all the inequalities of (1b) in a unified way. In this case, it is easy
to obtain the maximal achievable DoF. The result is the same as that
found in [1, 5]. This means that the result of [1, 5] is a special case
of ours.

In two-cell MIMO-IBC, i.e., G = 2, K > 1, from Table 1 we
have {qAn } = {1,K,K − 1,K2 − 2K, · · · }, which is not mono-
tonic any more. In fact, our study shows that except for the special
case of three-cell MIMO-IC, {pαn} and {qαn} are infinite sequences
without explicit expressions. As a result, it is non-trivial to find the
minimum antenna resources or maximal achievable DoF from (1b).
To circumvent this difficulty, we reexpress (1b) into a different form.

From (1b), we know that if pM ≥ qN (i.e., M/N ≥ q/p), we
have pM ≥ (pK + q)d (i.e., M ≥ (pK + q)d/p). Otherwise, we
have N ≥ (pK + q)d/q, ∀(p, q) ∈ A ∪ B. Therefore, (1b) can be
rewritten as{

M ≥Mα
n , ∀M

N
≥ Cαn

N ≥ Nα
n , otherwise.

∀n ∈ Z∗, α = A,B (3)

where Z∗ = Z+ ∪ {0}, the set of nonnegative integers,

Cαn , qαn/p
α
n (4a)

Mα
n , (Kpαn + qαn)d/pαn = (K + Cαn )d (4b)

Nα
n , (Kpαn + qαn)d/qαn = (1 +K/Cαn ) d (4c)

In Table 1, we also list some values of {Cαn}, α = A,B, which
show that Cαn , ∀n ∈ Z+ can be expressed as a form of generalized
continued fraction [10] as,

1The derivations also apply for the case of G = 2, K < 4, the only
difference is that the sequences will be finite here.

CAn = (G− 1)K − 1

G−1− 1

(G−1)K− 1
···

CBn = 1

G−1− 1

(G−1)K− 1
G−1− 1

···

(5)

According to the properties of continue fraction [10, Theorem
2.1], Cαn , ∀n ∈ Z+ can also be expressed as

CAn = (G− 1)K −
n−1∑
j=1

1
pAj p

A
j+1

, CBn =
n∑
j=1

1
pAj p

A
j+1

(6)

and satisfy

CAn+1 +
K

CAn
= CBn +

K

CBn+1

= (G− 1)K, ∀n ∈ Z∗ (7)

From (6) and (7), it is not difficult to derive
CBn < CBn+1 < CAn+1 < CAn , ∀n ∈ Z∗ (8)

and
CA∞ , lim

n→∞
CAn =

(G−1)K+
√

(G−1)2K2−4K

2

CB∞ , lim
n→∞

CBn =
(G−1)K−

√
(G−1)2K2−4K

2

(9)

By substituting (6) and (8) into (4b) and (4c), we obtain the ex-
plicit expressions of Mα

n , Nα
n , which are also monotonic. Since

{Cαn}, {Mα
n }, {Nα

n } are monotonic and have explicit expressions,
we can find the required minimal antenna resources to ensure the IA
feasible and the maximal achievable DoF from (3) and (1a).

Corollary 1. For a symmetric MIMO-IBC with constant coefficients,
to support d interference-free data streams for each user by linear
IA, the minimal numbers of antennas should satisfy{

N ≥ NA
n , ∀DA

n ≤ M
N
≤ CAn

M ≥MA
n+1, ∀CAn+1 ≤ M

N
≤ DA

n
, ∀n ∈ Z∗ (10a)

M +N ≥ (GK + 1)d, ∀CB∞ ≤
M

N
≤ CA∞ (10b){

N ≥ NB
n+1, ∀DB

n ≤ M
N
≤ CBn+1

M ≥MB
n , ∀CBn ≤ M

N
≤ DB

n
, ∀n ∈ Z∗ (10c)

where DA
n ,MA

n+1/N
A
n and DB

n ,MB
n /N

B
n+1, ∀n ∈ Z∗.

Proof. See [8].

According to Corollary 1, we show the feasible and infeasible
regions in terms of the required numbers of antennas for a G-cell
MIMO-IBC in Fig. 1.

As shown in Fig. 1, the feasible region can be divided into two
regions according to the ratio of M/N , i.e.,

Region I : CB∞ < M
N
< CA∞

Region II : 0 ≤ M
N
≤ CB∞ or CA∞ ≤ M

N

(11)

The IA feasibility is only determined by (1a) (i.e., the proper condi-
tion) in Region I, and only by (1b) (i.e., the irreducible condition) in
Region II.

The feasible region in Region II is divided by a piecewise linear
function of (M,N), which has two classes of corner points, one
class includes (MA

n+1, N
A
n ) and (MB

n , N
B
n+1), ∀n ∈ Z∗, and other

class includes (MA
n , N

A
n ) and (MB

n , N
B
n ), ∀n ∈ Z+.

Substituting (7) into (4b) and (4c), we have
MA
n+1 +NA

n = MB
n +NB

n+1 = (GK + 1)d, ∀n ∈ Z∗ (12)

which indicates that the former class of corner points is on the curve
of M +N = (GK + 1)d.
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Table 1. The Values of the Sequences
n 0 1 2 3 4 · · ·
pAn 0 1 G− 1 (G− 1)2K − 1 (G− 1)3K − 2(G− 1) · · ·
qAn 1 (G− 1)K (G− 1)2K − 1 (G− 1)3K2 − 2(G− 1)K (G− 1)4K2 − 3(G− 1)2K + 1 · · ·
CAn ∞ (G− 1)K (G− 1)K − 1

G−1
(G− 1)K − 1

G−1− 1
(G−1)K

(G− 1)K − 1

G−1− 1

(G−1)K− 1
G−1

· · ·

pBn 1 G− 1 (G− 1)2K − 1 (G− 1)3K − 2(G− 1) (G− 1)4K2 − 3(G− 1)2K + 1 · · ·
qBn 0 1 (G− 1)K (G− 1)2K − 1 (G− 1)3K2 − 2(G− 1)K · · ·
CBn 0 1

G−1
1

G−1− 1
(G−1)K

1

G−1− 1

(G−1)K− 1
G−1

1

G−1− 1

(G−1)K− 1
G−1− 1

(G−1)K

· · ·

0

BM
C

N


M

  1 1G K d 

N

Kd GKd

1

BM
C

N


BM
C

N


1

AM
C

N


0

0

AM
D

N


0

BM
D

N


0

AM
C

N


        Feasible

        proper but infeasible 

        Improper

Region I

 1M N GK d  

d

Region II

AM
C

N


 MN M KN d 

 ,B BM N 

 ,A AM N 

 0 1,B BM N  1 1,B BM N

 1 1,A AM N
Region II

 1 0,A AM N

Fig. 1. Feasible and infeasible regions of linear IA for symmetric
MIMO-IBC to support d data streams per user.

From (4b) and (4c), we can obtain

Mα
nN

α
n

Mα
n +KNα

n

=

(Kpαn+qαn )2d2

pαnq
α
n

(Kpαn+qαn )d

pαn
+

K(Kpαn+qαn )d

qαn

= d, ∀n ∈ Z+

(13)

which shows that the latter class of corner points is on the curve of
MN = (M +KN)d.

Therefore, the boundary of feasible region in Region II is a
piecewise linear function between M + N = (GK + 1)d and
MN = (M + KN)d, and (Mα

∞, N
α
∞) is the interaction point of

these two curves.

Remark 2. For a three-cell MIMO-IC, the IA feasibility cannot be
derived from the proper condition, as shown in [5]. This is because
for the two cases of G = 3, K = 1 or G = 2, K ≤ 4, Region
I is empty. For other cases, the proper condition determines the IA
feasibility if the antenna configuration falls into Region I.

Corollary 2. For a symmetric MIMO-IBC with constant coefficients,
given the numbers of antennas at each BS and user M and N , the
maximal achievable DoF per user by linear IA is bounded as

d(M,N) ≤ d∗(M,N) (14)

d∗(M,N) =



qAn
KpAn+qAn

N, ∀DA
n ≤ M

N
≤ CAn

pAn+1

KpAn+1+q
A
n+1

M, ∀ CAn+1 ≤ M
N
≤ DA

n

, ∀n ∈ Z∗

M +N

GK + 1
, ∀CB∞ ≤ M

N
≤ CA∞

qBn+1

KpBn+1+q
B
n+1

N, ∀DB
n ≤ M

N
≤ CBn+1

pBn
KpBn+qBn

M, ∀ CBn ≤ M
N
≤ DB

n

, ∀n ∈ Z∗

(15)
Corollary 2 can be obtained from Corollary 1 immediately.

3. DISCUSSION ON THE MAIN RESULTS

3.1. Spatial Extension versus Time/Frequency Extension

The DoF per user bd∗(M,N)c is achievable by linear IA without
any symbol extension, where exists a DoF loss owing to rounding.
It is worth to note that when considering spatial extension [1], the
achievable DoF will be d∗(M,N) for arbitrary M,N . In [1], the
achievable DoF with spatial extension is defined as d̄(M,N) ,
maxm∈Z+ {d(mM,mN)/m}, where d(·) is the achievable DoF
without spatial extension and m is a finite integer and denoted as
the spatial extension factor. It means that md̄(M,N) DoF per us-
er is achievable for the MIMO-IBC when each BS and user are e-
quipped with mM and mN antennas. Consequently, with the finite
spatial extension, the achievable DoF per user is not necessary to be
an integer, which can avoid the loss of DoF caused by rounding.

According to Corollary 2, we illustrate the maximal achievable
DoF with spatial extension as the solid curve in Fig. 2.

When the antenna configuration lies in Region I, from (15)
the achievable DoF with spatial extension can be obtained as
d̄(M,N) = (M +N)/(GK + 1). When the antenna configuration
lies in Region II, d̄(M,N) becomes a piecewise linear function
between MN/(M + KN) and (M + N)/(GK + 1), since the
boundary of feasible region for given number of data steam per user
is a piecewise linear segment between M + N = (GK + 1)d and
MN = (M +KN)d, as shown in Fig. 1.

In [6], the authors investigated a decomposition DoF bound,
which is defined as the achieved DoF in time/frequency varying
channels by first decomposing the antennas at both transmitter and
receiver sides and then using the asymptotic alignment (i.e., infi-
nite time/frequency extension). The decomposition DoF bound for
MIMO-IC was obtained as d̃(M,N) = MN/(M +N). This result
can be immediately extended into MIMO-IBC as follows

d̃(M,N) = MN/(M +KN) (16)

which is shown as the dotted curve in Fig. 2.
As shown in Fig. 1, (Mα

∞, N
α
∞) is the interaction point between
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Region II

0

BD BC

AC 1

AC 0

AD

/

(fix )

M N

N



0

Region I Region II

DoF

N

1

M N

GK





boundary between proper 

and improper systems

MN

M KN

 proper but 

infeasible region

Decomposition 

DoF bound

1

N

GK 

Fig. 2. Maximal achievable DoF with spatial extension.

M +N = (GK + 1)d and MN = (M +KN)d. Consequently, if
MB
∞/N

B
∞ = CB∞ < M/N < MA

∞/N
A
∞ = CA∞ (i.e., in Region I),

MN/(M+KN) > (M+N)/(GK+1). Otherwise,MN/(M+
KN) ≤ (M +N)/(GK + 1). Therefore, we have

in Region I, d̄(M,N) < d̃(M,N)

in Region II, d̄(M,N) ≥ d̃(M,N)
(17)

In Region I, the analysis in [6] indicates that the decomposition
DoF bound is the information theoretic maximal DoF for MIMO-IC
with time/frequcency varying channels. This conclusion also holds
for MIMO-IBC. From (17), we know that the achievable DoF with
spatial extension is lower than the information theoretic maximal
DoF.

In Region II, the achievable DoF with spatial extension is higher
than or equal to the decomposition DoF bound. Moreover, from the
analysis in [1,5], we know that the DoF derived from the irreducible
condition is the information theoretic maximal DoF for MIMO-IC
with both constant coefficient and time/frequency varying channel-
s. Again, this conclusion also holds for MIMO-IBC. This indicates
that, the information theoretic maximal DoF can be achieved by lin-
ear IA with finite spatial extension2. In other words, in this case the
infinite time/frequency extension is no longer necessary.

Remark 3. When G ≥ 4, K = 1, the analysis in [6] showed
the information theoretic maximal DoF for MIMO-IC with M/N ≤
(G− 1)/(G2 − 2G) as

d̄(M,N) =


M, ∀ 0 ≤ M

N
≤ 1

G
N
G
, ∀ 1

G
≤ M

N
≤ 1

G−1
(G−1)M

G
, ∀ 1

G−1
≤ M

N
≤ G

G2−G−1
(G−1)N

G2−G−1
, ∀ G

G2−G−1
≤ M

N
≤ G−1

G2−2G

(18)

The same result can be also obtained by substituting the values of pBn
and qBn for K = 1, n ≤ 3 into (15), where the linear IA can achieve
the information theoretic optimal DoF based on the above analysis.
Moreover, by substituting the values of pBn and qBn forK = 1, n ≥ 3
into (15), we can obtain the information theoretic maximal DoF for
the cases that are unsolved in [6].

2In this study, the linear IA considers the case either with finite spatial
symbol extension (without infinite time/frequency extension) or with no sym-
bol extension at all.

3.2. ICI eliminated proportion
To support K users each with d interference-free data streams, each
BS can provide M − Kd antennas to eliminate ICI and each user
can provide N − d antennas [7]. Define

rM ,
M −Kd

(G− 1)Kd
, rN ,

N − d
(G− 1)Kd

(19)

as the proportions of the ICIs that can be eliminated either by all the
BSs or by all the users.

When ρ , M/N falls into Region I, the information theoretic
maximal DoF is the decomposition DoF bound found in (16). From
this bound, we can derive the corresponding minimal numbers of
transmit and receive antennas asM ≥ (K+ρ)d, N ≥ (1+K/ρ)d.
When ρ lies in Region II, we have shown the minimal numbers of
transmit and receive antennas in (10a) and (10c). By substituting
these requirements into (19), we can observe how much ICIs must
be eliminated either at the BS side or at the user side, which are
respectively,

rM ≥
CAn+1

(G−1)K
, rN ≥ 1

(G−1)CAn
, ∀CAn+1 ≤ ρ ≤ CAn

rM ≥ ρ
(G−1)K

, rN ≥ 1
(G−1)ρ

, ∀CB∞ ≤ ρ ≤ CA∞
rM ≥ CBn

(G−1)K
, rN ≥ 1

(G−1)CBn+1
, ∀CBn ≤ ρ ≤ CBn+1

(20)

In Fig. 3, we show the results of rM and rN in (20) versus ρ.
We can see that when ρ ≤ 1/(G − 1), all the ICIs can be canceled
at the users. When ρ ≥ (G− 1)K, all the ICIs can be avoided at the
BSs, which is actually the case of coordinated beamforming [11]. In
other cases of ρ, neither the BSs nor the users are able to remove all
the ICIs at single side. As a result, when the values of ρ is in this
region, all the ICIs will be partially avoided with the antennas at the
BSs and be partially canceled with the antennas at the users.

0%

100%

IC
I 

el
im

in
a

te
d

 p
ro

p
o

rt
io

n

/M N 
1

1G 
 1G K0 

1

ACAC

BC1

BC 0

AC

ICI that must be 

eliminated by BS

ICI that must be 

eliminated by MS

 
2

1
1

1G K




0

BC

 
2

1

1G K

Region I Region IIRegion II

Fig. 3. ICI elimination proportion.

4. CONCLUSION

In this paper, we derived the maximal achievable DoF per user with
linear IA for general symmetric MIMO-IBC with constant coeffi-
cients by analyzing the sufficient and necessary conditions of IA
feasibility. We found that the minimal antenna resources required
to support the desired number of data streams can be divided into
two regions of M/N . In one region the DoF is limited by the proper
condition and lower than the decomposition DoF bound. In the oth-
er region the DoF is restricted by the irreducible condition and can
achieve the information theoretic maximal DoF.
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