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ABSTRACT

This paper considers transmit covariance optimization for a multi-
input multi-output (MIMO) Gaussian wiretap channel. Specifically,
we aim to maximize the MIMO secrecy capacity by judiciously de-
signing the transmit covariance under the sum power and per-antenna
power constraints. The MIMO secrecy capacity maximization (SCM)
problem is nonconvex, and so far there is no tractable solution avail-
able. We propose an alternating optimization (AO) approach to han-
dle the SCM problem. In particular, our development consists of
two steps: First, we show that the SCM problem can be reexpressed
to a form that can be conveniently processed by AO. Second, we
develop a custom-designed fast algorithm for each AO iteration. In-
terestingly, with this fast implementation, the overall AO algorithm
can be viewed as performing iterative reweighting and water-filling.
Finally, the convergence of the proposed algorithm to a stationary
solution of SCM is shown, and numerical results are provided to
demonstrate its efficacy.

Index Terms— secrecy capacity, alternating optimization, water-
filling, Per-antenna power constraints

1. INTRODUCTION

Recently, physical-layer secrecy, a means of providing confidential-
ity at the physical layer, has received considerable attention. In
contrast to the cryptographic approach, physical-layer secrecy has
at least two advantages, namely, provably perfect security and no
need for encryption keys. The latter makes physical-layer secrecy
very attractive for wireless applications, since the open nature of
the wireless medium makes the encryption key more vulnerable to
eavesdropping and impersonation attack [1,2]. Among the physical-
layer secrecy studies, the multi-input multi-output (MIMO) Gaus-
sian wiretap channel is of particular interest [3–5], because this fun-
damental wiretap model has its importance in understanding the use
of multiple antennas for enhancing secrecy. Several concurrent works
[3–5] have shown that the secrecy capacity of the MIMO Gaussian
wiretap channel under the sum power constraint is given by

C�
s = max

W�0,Tr(W)≤P0

ln |I+HHWH| − ln |I+GHWG|, (1)

where P0 is a given total transmit budget; W is the covariance ma-
trix of the transmit signal, or simply the transmit covariance; H/G
represents the MIMO legitimate / eavesdropping channel, respec-
tively (resp.). A more detailed model description will be provided in
the next section. In the sequel, we will call problem (1) the MIMO
secrecy capacity maximization (SCM) problem. The SCM problem
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(1) is nonconvex, and so far there is no efficient, tractable solution
to it for general H and G. As a compromise, some suboptimal de-
signs have been proposed, e.g., the fix-point iteration design [6], and
generalized singular value decomposition (GSVD) precoding [4, 7].

In this paper, we consider a more general form of SCM, where
per-antenna power constraints (PAPC) are incorporated into the SCM
problem (1). This SCM-PAPC design is motivated by the fact that
each antenna is often equipped with its own power amplifier (PA). In
order to operate within the linear region of each PA, one may want
to limit the per-antenna peak power [8]. Owing to the per-antenna
power constraints, the SCM-PAPC problem turns out to be more dif-
ficult than SCM. In this paper, we propose an efficient optimization
algorithm for SCM-PAPC. The proposed algorithm is based on an
equivalent reformulation of SCM-PAPC and an alternating optimiza-
tion (AO) methodology. In particular, we show that SCM-PAPC can
be equivalently expressed to a form that can be conveniently pro-
cessed by AO. Moreover, a custom-derived water-filling-like solu-
tion is developed for each AO iteration. In addition, we also prove
that the proposed algorithm is guaranteed to converge to a stationary
solution of SCM-PAPC.

1.1. Relation to Prior Work
This paper considers MIMO secrecy capacity maximization under
the sum power and per-antenna power constraints. Similar prob-
lems have been investigated in [4–7, 9], but the works [4, 6, 7, 9]
focus on the sum power constraint only, while [5] considers a dif-
ferent matrix covariance constraint, i.e., by replacing Tr(W) ≤ P0

in (1) with W � M for some given positive semidefinite matrix
M. In such a case, the SCM problem has a closed-form optimal so-
lution [5]. However, this closed-form design does not apply to the
sum power constraint or the per-antenna power constraints. Another
notable difference from [4–7] is the way that we handle the SCM-
PAPC problem. Specifically, in [6] Li and Petropulu developed a
fixed-point iteration to SCM by exploiting the Karush-Kuhn-Tucker
(KKT) optimality conditions. In [4, 7], a generalized singular value
decomposition (GSVD) precoding is applied to SCM by prefixing
the transmit covariance structure through GSVD, and then perform-
ing power allocation on each parallelized wiretap channel. Here,
we take a different approach. We first derive an equivalent formu-
lation of SCM-PAPC. Based on this new formulation, an alternating
optimization approach is developed to obtain an efficient design for
SCM-PAPC in an iterative water-filling-like manner.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the aforementioned three-terminal MIMO Gaussian wire-
tap model, which consists of a transmitter, a legitimate receiver and
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an eavesdropper. All the terminals are equipped with multiple anten-
nas. For ease of the subsequent description, we will call the trans-
mitter, the legitimate receiver and the eavesdropper Alice, Bob and
Eve, resp. Assuming quasi-static frequency-flat fading channels for
all the communication links, the received signals at Bob and Eve
may be modeled as

yb(t) = HHs(t) + nb(t), (2a)

ye(t) = GHs(t) + ne(t), (2b)

resp., where H ∈ C
Nt×Nb/G ∈ C

Nt×Ne represent the MIMO
channels from Alice to Bob/Eve, resp.; Nt, Nb and Ne are the num-
ber of antennas employed by Alice, Bob and Eve, resp.; nb(t) and
ne(t) are i.i.d. complex Gaussian noise with zero mean and unit
variance; s(t) ∈ C

Nt is the coded confidential information intended
for Bob.

The problem of interest here is the MIMO secrecy capacity max-
imization under the sum power and per-antenna power constraints
(SCM-PAPC), that is [5]

C�
s = max

W�0
Cs(W) (3a)

(SCM− PAPC) s.t. Tr(W) ≤ P0, (3b)

[W]ii ≤ Pi, i = 1, . . . , Nt, (3c)

where P0 > 0 and Pi > 0 for all i are given sum power and per-
antenna power limits, resp.; W = E{s(t)s(t)H} denotes the co-
variance of s(t); [W]ii is the ith diagonal element of W; and

Cs(W) = ln |I+HHWH| − ln |I+GHWG|,
which is the mutual information difference between the Alice-to-
Bob and Alice-to-Eve channels. Readers are referred to [1, 10] for
more details about the notion of MIMO physical-layer secrecy. Here
(3c) represents the per-antenna power constraints by imposing an
upper bound on each diagonal entry of the transmit covariance [8].

The SCM-PAPC problem (3) is a nonconvex problem. Under
the sum power constraint only, there exist special cases where prob-
lem (3) is solvable, namely, when Nb = 1 [11], Ne = 1 [12], or
HHH � GGH [9]. However, to the best of our knowledge, there
is no tractable solution for (3) in general. As mentioned in Introduc-
tion, several concurrent endeavors consider suboptimal, but easy-to-
implement, solutions for (3) [4, 6, 7]. In the next section, we will
propose a different solution to problem (3) using an alternating opti-
mization (AO) approach. The advantages of the proposed approach
will become clear in the subsequent development.

3. AN ALTERNATING OPTIMIZATION APPROACH TO
SCM-PAPC

3.1. An Equivalent Formulation of Problem (3) for AO

To describe our approach, we need to reexpress problem (3) to a
form that can be conveniently processed by alternating optimization
(AO). The following lemma will serve our purpose.

Lemma 1 ([13]). Let E ∈ C
N×N be any matrix such that E � 0.

Consider the function f(S) = −Tr(SE) + ln |S|+N . Then,

ln |E−1| = max
S∈CN×N ,S�0

f(S), (4)

and the optimal solution to the right-hand side of (4) is S� = E−1.

By applying Lemma 1 to problem (3) via setting E = I +
GHWG, we obtain an equivalent formulation of problem (3) as
follows

max
W,S

ln |I+HHWH| − Tr(S(I+GHWG)) + ln |S|
s.t. Tr(AiW) ≤ Pi, ∀i ∈ I, W � 0, S � 0,

(5)

where I � {0, 1, . . . , Nt}, A0 = I, Ai = eie
H
i , ∀i ∈ I\{0}

and ei is a unit vector with the ith entry being one. While the
SCM-PAPC equivalent problem (5) is still nonconvex with respect
to (w.r.t.) both W and S, the advantage of the reformulation is that
fixing either W or S, problem (5) is convex w.r.t. the other de-
cision variable. This coordinate-wise convexity property naturally
leads to an alternating optimization for problem (5). Specifically, let
(Wn,Sn) be the AO iterate at the nth iteration. We alternatingly
solve the following two optimization problems to obtain (Wn,Sn)
for n = 1, 2, . . .

Sn = argmax
S�0

ln |S| − Tr(S(I+GHWn−1G)), (6a)

Wn = arg max
W�0

ln |I+HHWH| − Tr(GSnGHW)

s.t. Tr(AiW) ≤ Pi, ∀i ∈ I. (6b)

For problem (6a), the optimal solution can be computed in closed
form by Lemma 1, that is

Sn = (I+GHWn−1G)−1. (7)

Moreover, in the next subsection, we will describe an efficient way
to compute the optimal solution of (6b). At this point, we should
point out the insight of the above AO iteration: The problem (6b)
is reminiscent of the MIMO capacity maximization problem, except
for an additional Eve-induced penalty term Tr(GSnGHW). Intu-
itively, this penalty term plays a role in degrading Eve’s reception,
thereby achieving a balance between maximizing Bob’s channel ca-
pacity and suppressing signal leakage to Eve. Moreover, as seen
from (6b) and (7), this penalty term will be adaptively updated ac-
cording to the previous transmit covariance Wn−1.

As a basic property of AO, the AO iterations yield a nondecreas-
ing sequence of the objective values of SCM-PAPC; i.e., Cs(W

n) ≥
Cs(W

n−1) ≥ . . . ≥ Cs(W
0). Moreover, we have the following

convergence result on the iterate Wn:

Proposition 1. Every limit point W̄ of the iterates {Wn} generated
by the AO process in (6a)-(6b) is a stationary point of the SCM-PAPC
problem (3).

The proof of Proposition 1 is given in the Appendix. A key
ingredient in proving Proposition 1 is to apply a specific block co-
ordinate descent (BCD) convergence result for the two blocks case;
see [14, Corollary 2].

3.2. An Iterative Water-filling-like Algorithm for Problem (6b)

In this subsection, we focus on developing an efficiently computable
solution to (6b). Our idea is to solve the dual of problem (6b). There
are two reasons for doing so. First, one can easily verify that strong
duality holds for problem (6b), and thus it suffices to consider the
dual of problem (6b). Second, as we will show shortly, the specific
dual problem structure allows us to compute a primal-dual optimal
pair in an iterative water-filling-like manner, thereby possessing low
per-iteration complexity.
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Consider the Lagrangian dual of problem (6b), that is

min
λ

f(λ)

s.t. λi ≥ 0, ∀i ∈ I
(8)

where λi ≥ 0 is the dual variable associated with Tr(AiW) ≤ Pi

for all i ∈ I, and

f(λ) � max
W�0

L(λ,W), (9)

L(λ,W)

= ln |I+HHWH|+
∑
i∈I

λiPi − Tr((GSnGH +
∑
i∈I

λiAi)W).

We apply a standard dual descent method (or more commonly known
as the dual ascent method when the primal problem is in the mini-
mization form [15]) to problem (8). Specifically, let λn,l denote
the lth iterate of the dual descent searches for (8). Then the iterates
{λn,l} are generated by the following projected subgradient (PSG)
update formula

λn,l+1 =
[
λn,l − αn,lδλn,l

]+
, l = 1, 2, . . . (10)

where [·]+ denotes an elementwise projection onto the set of non-
negative numbers; {αn,l} is a step-size sequence; and δλn,l denotes
a subgradient of f(λ) at the point λn,l. Readers are referred to the
optimization literature [15] regarding other general operational de-
tails of the dual descent method. Here, we are concerned with one
crucial component of the iteration— calculation of the subgradient
δλn,l . According to a standard result of the dual descent method, the
subgradient δλn,l takes the following form (cf. [15, Section 6.1])

δλn,l = [P0 − Tr(W�
λn,lA0), . . . , PNt − Tr(W�

λn,lANt)]
T
,

(11)
where W�

λn,l denotes an optimal solution of problem (9) when fix-

ing λ = λn,l. Apparently, efficiently computing W�
λn,l is the key

to achieving low-complexity iterations in (10). According to the re-
sults in [16,17], the optimal solution of problem (9) can be computed
in closed form, as summarized in the following lemma:

Lemma 2 ( [16, 17]). The optimal solution W�
λ of problem (9) is

given by
W�

λ = R−HUDUHR−1
(12)

where R is a square-root factorization of GSnGH +
∑

i∈I λiAi
1,

i.e., RRH = GSnGH +
∑

i∈I λiAi; U ∈ C
Nt×Nt is the left

singular vectors of R−1H; D = Diag (d1, . . . , dr, 0, . . . , 0) ∈
R

Nt×Nt with

di =
[
1− 1/σ2

i

]+
, i = 1, . . . , r,

r being the rank of R−1H, and σi > 0, i = 1, . . . , r, being the
positive singular values of R−1H.

Note that W�
λ in (12) exhibits a similar form as the classic water-

filling solution, except that an additional prewhitening of GSnGH+∑
i∈I λiAi is needed. We summarize the PSG iteration in (10),

together with the whole AO process in Algorithm 1.

1Without loss of generality, we can assume GSnGH +
∑

i∈I λiAi �
0, for otherwise GSnGH+

∑
i∈I λiAi must be rank-deficient, and we can

always find a vector w �= 0 such that (GSnGH+
∑

i∈I λiAi)w = 0. On
the other hand, if H is a randomly generated channel matrix, it follows that
HHw �= 0 with probability 1. Therefore, L(0, αwwH) will be unbounded
above as α → ∞, which is apparently infeasible for the dual problem (8).

Algorithm 1 AO Algorithm for SCM-PAPC (3)

1: Initialize n = 1, ε > 0, λ0 ≥ 0, and W0 � 0 such that
Tr(AiW

0) ≤ Pi, ∀i ∈ I and a maximum number of PSG
iterations L > 0;

2: while |Cs(W
n))− Cs(W

n−1)| > ε do
3: Update Sn according to (7);
4: Set l = 0 and λn,0 = λn−1;
5: while l ≤ L do
6: Calculate W�

λn,l and δλn,l according to (12) and (11);

7: λn,l+1 =
[
λn,l − αn,lδλn,l

]+
;

8: l = l + 1;
9: end while

10: (Wn,λn) = (Wn,l� ,λn,l�), where l� =

arg min
l=1,...,L

f(λn,l);

11: n = n+ 1;
12: end while
13: Output Wn.

3.3. Secrecy Capacity Maximization with the Sum Power Con-
straint Only

In this subsection, let us particularize the above AO algorithm to
SCM with the sum power constraint only. In such a case, there is
a more convenient and efficient way to search for the dual optimal
solution, rather than using PSG iterations in (10). To see this, note
that (W�

λ�
0
, λ�

0) is a primal-dual optimal pair to problems (6b) and

(8) (with I = {0}) if the following condition holds [15]

λ�
0(Tr(W

�
λ�
0
)− P0) = 0, λ�

0 ≥ 0, (13)

where W�
λ�
0

is given by (12) with λ = λ�
0. The following fact (see

[18, Sec. 13.1, Lemma 1]) sheds lights on the search for such λ�
0.

Fact 1. The function Tr(W�
λ0
) is nonincreasing w.r.t. λ0.

This monotonicity means that we can adopt an efficient bisec-
tion approach to find λ�

0. Specifically, for a given λ0, we com-
pute W�

λ0
and Tr(W�

λ0
) from (12). If Tr(W�

λ0
) > P0 (resp.

Tr(W�
λ0
) < P0), we increase λ0 (resp. decrease λ0). After a

number of searches, we have either λ0 = 0 and Tr(W�
λ0
) ≤ P0

or λ0 > 0 and Tr(W�
λ0
) = P0, thereby satisfying the optimality

condition (13).

4. SIMULATION RESULTS AND CONCLUSIONS

We provide two simulation examples to demonstrate the performance
gains of the proposed AO algorithm. The simulation settings are as
follows: The number of antennas at Alice, Bob and Eve are Nt = 5,
Nb = Ne = 4, resp. In each simulation trial, Bob and Eve’s chan-
nels are randomly generated following an i.i.d. complex Gaussian
distribution with zero mean and unit variance.

In the first example, we consider SCM with the sum power con-
straint only, and compare the proposed AO algorithm (cf. Section 3.3)
with the fixed-point method (FPM) [6], the GSVD method [4] and
the projected SVD (P-SVD) method [12]. Fig. 1 shows the secrecy
rates of the various methods w.r.t. the transmit power. From the fig-
ure, we can see that the proposed AO algorithm yields performance
identical to FPM, and outperforms the other methods over the whole
range of powers tested. Table 1 shows the average running times of
AO and FPM under the same setting as Fig. 1. As seen, AO is much
faster than FPM, especially for large powers.
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In the second example, we compare the proposed AO algorithm
with the closed-form design in [5] under the per-antenna power con-
straints. Note that [5] deals with a matrix-covariance constrained
SCM problem (cf. Introduction), and we provide the result of [5]
here as a reference. To facilitate the comparison, we consider the
per-antenna power constraints (3c) only, and the sum power con-
straint (3b) is omitted in the following simulation. The implemen-
tation details are as follows: We set P1 = . . . = PNt = Pant,
λ0
1 = . . . = λ0

Nt
= 1, W0 = PantI, L = 1 and ε=1e-3. As for

the setting of [5], the covariance-matrix constraint W � PantI is
adopted for simplicity. Fig. 2 shows the secrecy rate behaviors of
the two designs when we increase Pant from 0 dB to 18 dB. It is ev-
ident that the AO design outperforms the closed-form design in [5],
and there is about 1 bit/channel use constant rate gap between the
two designs.

To conclude, this paper has developed an alternating optimiza-
tion (AO) approach to the MIMO secrecy capacity maximization
problem under the sum power and per-antenna power constraints.
The proposed AO algorithm can be efficiently implemented in an it-
erative water-filling-like manner, and is guaranteed to converge to a
stationary point of the secrecy capacity maximization problem (3).
The efficacy of the proposed approach has been demonstrated by
simulations.
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Fig. 1: Secrecy rates versus the sum power.
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Fig. 2: Secrecy rates versus the per-antenna power.

Table 1: Average running times (in secs.) of AO and FPM

Algorithm
Power (dB)

4 8 12 16 20

AO 0.0172 0.0264 0.0414 0.0646 0.0930
FPM 0.1254 0.1805 0.3237 0.7672 13.5714

5. APPENDIX

We divide the proof into two steps: First, we show that every limit
point of the iterates generated by (6a)-(6b) is a stationary point of (5);
secondly, we show that every stationary point of (5) is also a sta-
tionary point of SCM-PAPC (3), thereby establishing our claim in
Proposition 1.

Step 1: We need the following convergence result.

Lemma 3 ( [14, Corollary 2]). Consider the problem:

min
x

f(x1,x2) s.t. x ∈ X � X1 ×X2 (14)

where f : Rm1 × R
m2 → R is a continuously differentiable func-

tion; Xi ⊆ R
mi , i = 1, 2 is a closed, nonempty and convex subset.

Suppose that the sequence {xn} generated by optimizing x1 and x2

alternatingly has limit points. Then every limit point of {xn} is a
stationary point of (14).

It can be verified that the objective function of (5) is continu-
ously differentiable, and the feasible set is closed, nonempty and
convex. Moreover, the iterates (Wn,Sn) must be bounded, owing
to the total power constraint in (5). Then, by Bolzano-Weierstrass
theorem, we know that (Wn,Sn) must have limit points. Therefore,
invoking Lemma 3, we conclude that every limit point of (Wn,Sn)
generated by (6a)-(6b) is a stationary point of (5).

Step 2: Let φ1(W,S) and φ2(W) be the objectives of prob-

lems (5) and (3), resp., and W � {W | W � 0, Tr(AiW) ≤
Pi, ∀i ∈ I}. Suppose that (W�,S�) is a stationary point of (5).
Then, we have

Tr
(
∇Wφ1(W

�,S�)H(W −W�)
)
≤ 0, ∀ W ∈ W (15a)

Tr
(
∇Sφ1(W

�,S�)H(S− S�)
)
≤ 0, ∀ S � 0. (15b)

It follows from (15b) that

S� = (I+GHW�G)−1. (16)

Notice that for a given W�, the corresponding optimal S� is uniquely
given by (16). Hence, by applying Danskin’s theorem [15], we can
substitute (16) into (15a), and have that

Tr
(∇Wφ1

(
W�, (I+GHW�G)−1)H(W −W�)

) ≤ 0 (17)

holds for all W ∈ W . On the other hand, it can be verified that

∇Wφ2(W
�)

= H(I+HHW�H)−1HH −G(I+GHW�G)−1GH

= ∇Wφ1

(
W�, (I+GHW�G)−1

)
.

(18)
Therefore, we conclude from (17) and (18) that

Tr
(
∇Wφ2(W

�)H(W −W�)
)
≤ 0, ∀ W ∈ W,

i.e., W� is a stationary point of problem (3).
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