
STUDENTS’ UNDERSTANDING OF CONVOLUTION1 
 

Jill K. Nelsona & Margret A. Hjalmarsonb 

 
Department of Electrical and Computer Engineeringa, Graduate School of Educationb 

George Mason University 
 

                                                
1 This research was supported by NSF Grant 0835919. 

ABSTRACT 
 
This paper examines students’ interpretations of open-ended 
convolution tasks in order to understand typical approaches 
students use to arrive at solutions. The goal of the study is to 
determine which solution approaches are more or less 
effective for students, as well as understand how signals and 
systems novices interpret open-ended problems in a course. 
 

Index Terms— signals and systems education, 
convolution, graphing, representations 
 

1. INTRODUCTION 
 
An ongoing challenge in signals and systems instruction is 
helping students learn to apply and transfer concepts and 
move beyond rote application of procedures to thinking 
about when and where to use procedures. Related to this 
issue of conceptual understanding is the need for 
understanding multiple representations of problems, 
including written statements (e.g., explaining the problem), 
equations, and various forms of graphs. All three 
representations are important to the conceptual 
understanding and the flexible use of procedures to solve 
problems. For example, students need to understand how 
different graphs illustrate different aspects of a system and 
which equations may be appropriate or useful for solving a 
problem.  This requires them to transfer and to extend their 
mathematics knowledge to signal processing contexts and 
applications. For this study, we closely examined two 
typical signals and systems problems that incorporated 
written, symbolic, and graphical representations and which 
elicited a variety of student responses. We wanted to 
understand which representations students used and how 
they utilized graphs, in particular, to solve problems.  

The course we are investigating is a junior-level course 
where students are regularly (at least once per week) given a 
problem to solve in class. These problems focus on 
foundational concepts (such as convolution) that the 
instructor wants to emphasize and ensure that students 
understand. The in-class problems provide students an 
opportunity to obtain feedback, as well as indicate to the 
instructor when students might need additional help. For this 

study, we have used one in-class problem (solved as a 
group) and one exam problem (solved individually) to 
understand students’ conceptions of convolution.  This work 
complements existing studies of students’ understanding of 
convolution (e.g., [1]) by focusing on students’ use of 
graphs in solving convolution tasks. 
 

2. RELATION TO PRIOR WORK 
 
This literature review will focus on studies and discussions 
of graphing rather than representations in general. Cramer 
[2] discussed a five-part framework of mathematical 
representations including: symbolic, written, verbal, 
concrete, and graphical. She described the need for 
translation between and among these different types of 
representations as people work on mathematical problems. 
While signals and systems is a particular application of 
mathematical activity, the students’ interpretations and 
analyses of graphs is related to other areas of higher 
mathematics where graphs are used to represent complicated 
phenomena. Students need to be able to move flexibly 
between symbolic and graphical representations. In addition, 
they need to translate between graphical representations. In 
particular, conceptual understanding of foundational topics 
such as convolution is difficult for students to develop [3]. 

A number of authors focus on the concept of graph 
sense or how users of graphs interpret, analyze and create 
graphical representations of phenomenon (e.g. [4-7]. There 
are two aspects of graph sense that are relevant for the 
current study. First, there is the analysis and interpretation 
of graphs. Studies have examined how experts and novices 
read familiar and novel graphs and make sense of the 
information [8]. In studies of scientific experts who used 
graphs, Roth and Bowen [6] studied how the experts 
interpreted graphs both within their own discipline of 
expertise and graphs from a related, but unfamiliar 
discipline. The scientific experts use a two-stage process to 
read graphs. They first identify the salient features and then 
they use those features to ground the graph within the real 
context it represents. The meaning of the graph is situated 
within the scientists’ experience making the signs and 
symbols used in graphing (e.g., standard variable names 
within the discipline) a critical component of reading 
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graphs. The second aspect of graph sense is the development 
or creation of graphs. Ubuz [7] discussed graphing the 
derivative in relationship to the function. The study 
examined how students understood the tangent line and then 
developed interpretations of the graphs of the function and 
its derivative. The students’ conceptual understanding of a 
function and its derivative was tightly related to prototypical 
graphs used in their calculus courses. Similar to Roth and 
Bowen [6], Ubuz’s study underscored the use of graphs as 
signs or symbols for real phenomenon, concepts, symbolic 
representations or verbal descriptions. Interpretation of 
graphs is both an essential part of conceptual understanding 
of the mathematical phenomena they represent and a 
significant part of graph sense itself.  

In the study presented in this paper, the students were 
asked to connect graphs to symbols and to other graphs. 
Prior work has focused on the relationship between graphs 
and other forms of representation rather than translations 
between graphs. Within Cramer’s [2] five-part framework, 
there is also room for within-representation translations 
(e.g., graph to graph, symbols to symbols). While research 
has examined translation between representations, there is 
less research about translation within representations. 
However, within engineering, there are applications (such as 
signals and systems) where students need to work with 
multiple representations of the same phenomena that are in 
the same representational form. For example, one might 
encounter two different graphs that represent the same 
system. Students spend significant time in calculus courses 
using time as the independent variable, but frequency is not 
used as extensively, nor do students often compare and 
interpret the same function using different independent 
variables. In addition, students have limited experience with 
discrete math in contrast to their experience with continuous 
problems.  

Students’ understanding of functions in general and 
graphical representations specifically plays a role in their 
interpretation of the characteristics of the signals and 
systems they are given in problems. By the junior-level 
engineering course under investigation, the students have 
completed the calculus sequence and differential equations 
so should have a strong sense of variables and the 
relationships between variables in a function. Thompson [9] 
presented three interpretations students commonly have of 
functions: action, process and object. In the action 
conception, students view functions as a means for 
calculation. In the process conception, functions shift to 
representing a process for evaluation, not just the result of 
the evaluation. Finally, in the object conception, students 
see functions as objects for manipulation in and of 
themselves. For signals and systems contexts, all three 
conceptions are necessary. The objects in question (signals 
or systems) have real-world meaning, and students 
particularly need an object conception of function in order 
to be able to consider symbolic and graphical 
representations of signals that can be manipulated. A system 

is an example of a function whose domain and range are 
also functions. For example, a filter is a type of system 
where a signal (represented by a function) is passed through 
a filter (also represented by a function) whose output is 
another signal. The functions and graphing literature is 
largely situated within algebra and typically focuses on 
linear or quadratic functions where students are asked to 
translate between real-world contexts, graphical and 
symbolic representations (e.g., [10]).  

 
3. METHODOLOGY 

 
After reviewing two exams and multiple in-class problems 
from a junior-level signals and systems course, two 
problems (shown in Figures 1 and 2) were selected for 
further analysis because of their open-ended nature and the 
students’ use of graphs and other drawings to develop their 
solutions to convolution problems. Since the in-class 
problems are completed as a group, we wanted to use the 
exam problem to analyze individual students’ 
understanding. However, the in-class problem provides 
understanding of their earlier conceptions in a more 
informal setting. The goal of the analysis was to describe the 
types of solutions students employed and the level of their 
success and efficiency at solving the stated problem. We 
selected the tasks that were open-ended (in order to have 
access to which approaches the students used) and that 
included a graphical component as well as symbolic 
components in order to understand how students used these 
two representations. Next, the responses to the tasks were 
coded by solution strategy and grouped by the correctness of 
the response. Sixteen student responses to the in-class task 
were analyzed, and 31 responses to the exam problem were 
coded. 

 

 
 
Figure 1. In-class problem 
 

4. RESULTS 
 
We first consider the in-class problem shown in Figure 1. 
As anticipated, a variety of solution strategies emerged. 
Most students did draw figures or graphs to support their 
analysis of the problem. However, they did not all draw the 
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same types of graphs.  When the convolution sum was used 
directly to guide graphical convolution, students flipped and 
shifted h[n].  
 

 
 
Figure 2. Exam Problem 
 

Table 1 shows the distribution of student solutions 
across two major coding categories (student strategy and the 
correctness of the output) for the in-class problem. (Note 
that a response can receive more than one code). As shown 
in Table 1, a large percentage of students generated 
equations for h[n], x[n], or both, even though an equation-
based representation of the sequences was not required to 
solve the problem. Students who used scaling and shifting 
strategies, whether applied to h[n] or x[n], drew graphs to 
determine the system output. Students who drew upon the 
derivation of the convolution sum from linearity and time 
invariance properties to solve the problem were split among 
those who summed scaled and shifted copies of x[n] and 
those who summed scaled and shifted copies of h[n].  
Students in the latter group demonstrated an understanding 
of both the concept of convolution and the commutative 
nature of the operation. Students who constructed equations 
for x[n] and/or h[n] often used these equations to determine 
how copies of the signal or impulse response should be 
scaled (and shifted) before summing.  
 

In-class Code  Frequency 
Student Strategy  
Constructs equation for h[n] 6 
Constructs equation for x[n] 3 
Flips and shifts h[n] to find 
output at each n 5 
Scales and shifts x[n] and 
sums copies 6 
Scales and shifts h[n] and 
sums copies 3 
Correct/Incorrect Output  
Fully correct output 11 
Output correct except indices 3 
Incorrect output 2 

 
Table 1. In-class problem results 

Students’ attachment to familiar use of notation was 
apparent in the solution strategies.  Many of those who 
chose to sum scaled and shifted copies of h[n] exchanged 
the names of the two sequences (h[n] and x[n]) so that their 
approach fit the familiar model of summing scaled and 
shifted copies of the input as dictated by the elements of the 
impulse response.  

Interesting examples of student work are shown in 
Figures 3 and 4. Figure 3 shows a brute-force solution 
strategy that is ultimately incorrect. The students attempt to 
apply the convolution sum brute force, producing flipped 
and shifted versions of h[n], multiplying h[n-k] by x[k], and 
summing at each n to obtain y[n].  This is cumbersome, and 
the students incorrectly address the shifting task. The 
response illustrates how students need to understand 
foundational concepts as well as to know which types of 
graphs or sketches will be useful. In contrast, Figure 4 
shows a correct and elegant response where students have 
drawn directly on the derivation of the convolution sum to 
produce the system output. 
  

 
 

Figure 3. Incorrect student response to the in-class problem 
 

 
 

Figure 4. Correct solution to the in-class problem 
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The 31 responses to the exam problem were coded as 
shown in Table 2.  (Note that a response could receive more 
than one code). Again, a range of strategies were observed 
using both sketches and equations with the large majority of 
students sketching the system input u[n]. However, 
significantly more responses were incorrect, probably due to 
the individual nature of the exam and the increased 
difficulty of the problem. Twelve of the students computed 
h[n] element by element, noting that starting from n=0, each 
sample of y[n] is a function of one additional sample of h[n] 
until h[n] and x[n] fully overlap in the flipping and shifting 
process. Ten of the twelve students who computed h[n] 
element by element also had correct solutions, indicating 
this was a largely successful strategy for solving the 
problem.  Three students used conceptual properties of 
convolution to find h[n], e.g., using the causality of the 
system and the value of n at which y[n] becomes constant to 
infer the length and range of support of h[n]. Also notable is 
how many students could not articulate an approach to the 
task. Many of those worked backward through the task but 
could not express how they were using the definition of 
convolution to arrive at their solution.  Because they were 
not given an input and an impulse response, students could 
not directly apply the convolution sum to solve the problem. 

 
Exam Problem Code Frequency 
Sketch/Equation  
Sketches x[n] 19 
Generates equation for y[n] 5 
Approach  
Computes h[n] element-by-
element 12 
Scales and shifts copies of x[n] 2 
Uses properties of convolution 
procedure 3 
Assumes h[n] has same shape 
as y[n] 7 
Applies other misconception 2 
No approach provided 5 
Correctness  
Correct 16 
Incorrect 12 
No answer 3 

 
Table 2. Exam problem coding 
 

5. CONCLUSIONS AND DISCUSSION 
 
An ongoing question related to students’ conceptions of 
convolution and their approaches to solving convolution 
tasks is how to help them find effective and efficient 
strategies. In addition, students need to be able to think 
conceptually about a problem rather than simply applying 
equations or procedures. Graphing is often a more 

conceptual approach, and students seem to struggle more to 
construct appropriate graphs and employ them correctly. 
While there might be multiple approaches to a problem, 
there are strategies that are more or less efficient. The 
students in this sample were also challenged by their ability 
to use graphs and equations.  

For teaching introductory signals and systems courses, 
it is important for instructors to understand how novices 
interpret problem situations and may rely on a few, rote 
procedures when solving tasks rather than approaching 
problems conceptually. This means that changes that may 
appear trivial to an instructor (expert) are not necessarily 
trivial to the learner (novice). The problem responses also 
continue to illustrate students’ reliance on equations even 
when graphs or other diagrams may be more effective and 
efficient at leading to a solution and illustrating salient 
characteristics of the problem situation. In addition, 
instructors need to ensure that assessments and homework 
assignments include a wide variety of problem types in 
order to challenge students to analyze the approaches they 
are selecting to solve problems. There are assessments 
available such as the signals and systems concept inventory 
[11] that include tasks that assess students’ conceptual 
understanding. For example, one strategy is to remove 
numeric values from tasks or focus students on graphical 
responses to require them to consider the concepts rather 
than relying on rote calculations and procedures. 
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