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ABSTRACT

Knowing what amount of radioactive material was released from
Fukushima in March 2011 is crucial to understand the scope of the
consequences. Moreover, it could be used in forward simulations
to obtain accurate maps of deposition. But these data are often not
publicly available, or are of questionable quality. We propose to es-
timate the emission waveforms by solving an inverse problem. Pre-
vious approaches rely on a detailed expert guess of how the releases
appeared, and they produce a solution strongly biased by this guess.
If we plant a nonexistent peak in the guess, the solution also exhibits
a nonexistent peak. We propose a method based on sparse regular-
ization that solves the Fukushima inverse problem blindly. Together
with the atmospheric dispersion models and worldwide radioactivity
measurements our method correctly reconstructs the times of ma-
jor events during the accident, and gives plausible estimates of the
released quantities of Xenon.

Index Terms— Fukushima, Daiichi, nuclear power plant, ex-
plosion, inverse problems, FLEXPART, dispersion

1. INTRODUCTION

Nuclear power plants (NPP) provide an abundant, relatively cheap,
and carbon-neutral source of energy. However, they also introduce a
possibility, albeit a very remote one, of a major accident. A nuclear
accident is defined by the International Atomic Energy Agency as
an event having lethal consequences, environmental effects such as
large radioactivity releases, and producing long-lasting facility de-
fects such as core melts. Level 7 on the International Nuclear Events
Scale is defined as a major release of radioactive material with
widespread health and environmental effects requiring implementa-
tion of planned and extended countermeasures [1]. Two accidents
have reached this level—Chernobyl in April 1986 and Fukushima
Daiichi in March 2011.

The principal consequence of NPP accidents is the release of
radioactive material. Transported through the atmosphere, it even-
tually gets widely spread, polluting the environment for centuries at
a large scale. The exposure to the radioactive material causes can-
cer, teratogenesis, cognitive decline, and heart disease [2]. Thus it is
imperative to monitor the radioactive contamination of soil, waters
and atmosphere. Unfortunately, the contamination can only be accu-
rately measured at a limited number of survey sites due to the cost
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of scientific grade equipment. This suggests the need for numerical
simulations of atmospheric dispersion [3, 4].

But getting accurate concentration and deposition values through
simulations requires the knowledge of the source term—we should
know how much radioactive material was released at what times. Its
precise estimate is essential to properly estimate the contamination
and take risk reducing measures. However, these data are often not
publicly available or it is unknown. In particular, some works [4, 5]
challenge the data released by the Japanese government about the
Fukushima accident. An option is to calculate the source term based
on spatio-temporal samples of the concentration, that is, by solving
an inverse problem.

We propose to estimate the source term by inverting the atmo-
spheric dispersion. This would provide us with an estimate of how
much radioactive material was released, and with a firm starting
point for understanding the scope of the pollution through disper-
sion simulation. We summarize our effort as follows,

Problem 1 (Fukushima Inverse Problem). Given the measurements
y collected at the survey sites, and the model A, recover the tempo-
ral variation of the radioactive material release x.

The main contribution of this paper is a solution to the Fukushima
inverse problem formulated as a convex program. We use worldwide
radioactivity measurements and weather data from March 2011 on.
Unlike previous approaches, the proposed formulation correctly es-
timates the explosion and venting times based on Xenon emissions,
without involving an expert-knowledge-based initial guess. The
estimated release magnitudes match earlier expert estimates.

2. MODELING AND PRIOR ART

Numerical simulations relate the deposition at locations of interest
with the amount of material emitted by the source. The link is es-
tablished through atmospheric dispersion models. These models fre-
quently assume a linear relationship,

y(ξ, t) =

∫ t

0

A(ξ, t, τ)x(τ) dτ (1)

where y(ξ, t) is the measured concentration of the material at the
location ξ ∈ R2 at time t, x(τ) is the amount of material emit-
ted at time τ and A(ξ, t, τ) is the spatio-temporal kernel of atmo-
spheric dispersion. In practice, we discretize the source term, and
compute the deposition values at a finite number of locations and
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Fig. 1. Sensitivity of the formulation in [4] to initial guess. (A)
Initial guess used in the paper and the corresponding reconstruc-
tion. (B) Modified initial guess with a relocated peak. The solution
changes shape to match the new (in reality nonexistent) peak.

times. Therefore, the following discretized form is considered,

y = Ax, (2)

where y ∈ Rm contains the values of deposition at known locations
in time and space and x ∈ Rn describes the time-varying amount of
material released by the source. A ∈ Rm×n is sometimes referred
to as the sensitivity matrix, and computing it is a science in itself.
Entries of A are complicated functions of the weather patterns, the
type of the radioactive material, and the source position.

A popular class of models to compute A are the Lagrangian Dis-
persion Models (LDM). They model the particle trajectories by ran-
dom walks, and then simulate the trajectories for a large number of
particles. The entries of the sensitivity matrix are computed as em-
pirical expectations of particle densities at given locations and times.
We use an LDM called FLEXPART [6] since it is publicly available,
has been validated against large-scale tracer experiments [7] and is
considered reliable, being used for 15 years by a wide community.
In principle, knowing the emission rates x and having the “correct”
matrix A enable us to compute concentrations at arbitrary points in
time and space.

Inverse problems have a rich theory. A good overview of linear
inverse problems is given in [8]. Standard regularizations in the do-
main of atmospheric dispersion modeling involve smoothing based
on the norm of the discretized second derivative of x [9]. There
have also been attempts to solve the Fukushima Inverse Problem.
The state-of-the-art approach is the one considered in [4]. The au-
thors observe that regularization based only on the smoothed second
derivative does not yield satisfactory results. They use a combination
of measurement error, norm of the second derivative and an a priori
guess of the emission pattern based on expert knowledge. However,
the algorithm they propose requires a number of parameters, gener-
ally unknown, to be blindly estimated. Moreover, the obtained esti-
mate tends to overfit the a priori guess, while being less sensitive to
actual measurements. We show that recently popularized sparse reg-
ularizations [10, 11] improve the situation by removing the need for
the expert guess. The correct regularization is not the only ingredient
though, as we explain in the sequel.

3. PRIOR APPROACHES TO FUKUSHIMA PROBLEM

We seek to reconstruct the temporal variation of the intensity of the
radioactive release. The time of the accident being known, we might

focus on estimating the amount of material released in this specific
time interval. But ideally, we should be able to blindly reconstruct
the timing of releases. This is valuable since it would permit us to
detect radioactive material releases that otherwise went unnoticed.
A blind reconstruction would also strongly suggest that the correct
temporal reconstruction does not result from the a priori guess.

In the discrete formulation (2), y contains the concentration
measurements of radioactive Xenon-isotopes in air at stations from
the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)
monitoring network. This network comprises 25 stations equipped
with very sensitive radioactive Xenon detectors. The detectors typ-
ically have three stages. Two to concentrate and purify the gas
sample, and the third one to measure the activity of the final gas
sample. The duration of the sampling and purification process limits
the number of samples per day to between one and three, depend-
ing on the detector model [12]. These systems allow to measure
133Xe to an accuracy of 0.1 mBq m−3 [4]. Measurements from 15
CTBTO and 2 non-CTBTO stations are eventually used to solve the
inverse problem. The locations of these stations are shown in Figure
2(C). Interestingly, measurements from the CTBTO station located
in Japan could not be used because the levels of Xenon were over
the highest detectable level of the system, saturating the detectors.
All the measurements were corrected for radioactive decay. For
additional information on the pre-processing of the data see [4].

On the right hand side in (2), the source term x contains the rate
of release of Xenon in Bq s−1, at the location of Fukushima Dai-
ichi NPP between March 10 and March 16. Temporal resolution is
three hours and three different ejection heights are considered. Dif-
ferent heights, 0-50 m, 50-300 m, and 300-1000 m, are necessary
since the atmospheric transport of particles depends substantially on
the altitude of the source [4]. Finally, the model matrix A describes
every measurement as a linear combination of source terms. The
coefficients of A are computed using FLEXPART. The number of
measurements is relatively low, so the coarse discretization is neces-
sary. The sensitivity matrix has dimensions 858 × 120. Since it is
an overdetermined system, the first idea is to find the least-squares
solution,

x̂ = arg min ‖Ax− y‖22. (3)

Minimization (3) has a closed form solution given in terms of the
Moore-Penrose pseudoinverse of A, x̂ = A†y = (A>A)−1A>.
However, applying the pseudoinverse does not do a good job. This
happens for 2 reasons: 1) the matrix has a huge condition number
and 2) the matrix likely exhibits a sizeable model mismatch, and
there is noise in the measurements (although negligible in compari-
son with the model mismatch). We might attempt to fix the condi-
tioning issues by the Tikhonov regularization, but the result would
still be unsatisfactory. We need a good model for the source term,
and assuming that it minimizes the Euclidean norm of the measure-
ments has no justification.

The dispersion modeling community developed specific meth-
ods to cope with these nuisances. Typically, they aid the estima-
tion by forming an expert-knowledge-based guess of the result. In
the Fukushima case this comprises knowledge about when the acci-
dents took place, what specific parts of the power plant were affected
at what times, and the general expert knowledge about the nuclear
power plant technology. The minimization then involves terms fa-
voring the a priori solution, and an additional smoothing term with
a second discrete derivative. If we have an estimate of uncertainties
of different components in the guess, and similarly for observations
(since they are obtained by techniques of different quality), we may
also include these in the solution. Denoting by xa the initial guess,
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this leads to the following convex program,

x̂ = arg min ‖Wy(Ax− y)‖22
+ λ‖Wa(x− xa)‖22 + ε‖D2(x− xa)‖22, (4)

where D2 is the discrete second derivative, W>
y Wy = C−1

y and
W>

a Wa = C−1
x , if Cy and Cx are the covariance matrices of the

observations and of the initial guess.
Estimation using (4) was performed in [4]. The authors obtain

good results with this technique but the caveat is that it is difficult
to assess it, since it is very close to the a priori solution (admitting
that the initial guess may be very good). To exemplify the point, in
Figure 1(A) we plot the solution to (4) with the initial guess used
by the authors. The corresponding measurements were generated by
plugging their initial guess into the model, and then adding noise
(SNR=10 dB) to simulate the model mismatch. Now we relocate a
peak and rerun the experiment. The result is shown in Figure 1(B).
The solution now perfectly follows the relocated peak, and the old
peak appears smoothed out. In conclusion, the method is useful, but
very sensitive to the initial solution. If we account for this through
“small” Wa (corresponding to large uncertainties), then we drift to-
wards the Tikhonov regularization, since “small” Wa makes the a
priori knowledge term small or negligible. But Tikhonov was shown
not to perform well in [4]. In summary, what we seek is a method to
correctly detect the emission times without the a priori expert knowl-
edge. It would be wrong to just dismiss the available expert estimate,
but a good method must give plausible results even without it.

4. INGREDIENTS OF A GOOD SOLUTION

We show that a successful solution to Problem 1 comprises three
ingredients. One of the critical steps is data pre-processing. This is
often encountered in the machine learning world. We identified the
following key ingredients,

1) Choosing the proper regularization,
2) Cleaning the matrix,
3) Incorporating the natural constraints on the solution (such as pos-

itivity).

1) Proper regularization. Xenon ejection waveforms (estimates) in
Figure 1(A) reveal that it was released in short bursts (some mate-
rials like Cesium are released during more extended periods), The
temporal variation of the Xenon emission exhibits several peaks and
many small elements. Therefore, a proper regularizations should fa-
vor signals with many zeros and a few large elements. This is in
contrast with what is known about the regularization based on `2
norms, such as Tikhonov. These favor many small/moderate ele-
ments. We should find the solution yielding something close to the
observed measurements, but with as many zero elements as possible.
Since minimizing the number of non-zeros is not tractable, we use
the standard relaxation based on the `1 norm. The solution is termed
basis pursuit denoising [13],

x̂ = arg min ‖Ax− y‖22 + λ‖x‖1 (5)

2) Cleaning the matrix. Figure 2(A) shows the matrix used in [4].
We notice many very small elements (note that the color bar is in
logarithmic scale). That is, many matrix rows have zero or negligible
norms, meaning that these sensors do not contribute to the result
w.r.t. rows with larger norms. Same figure shows the corresponding
distribution of the measuring stations around the world. The small-
norm rows deteriorate the solution of the inverse problems. This can
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Fig. 2. Matrix (A) before and (B) after cleaning. (C) Measurement
stations plotted on the world map. The red dots correspond to mea-
surements stations that are completely left out of the consideration
after cleaning the matrix.
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Fig. 3. SNR of the recovered source term as a function of the SNR
of the synthetic measurement obtained by the forward-model matrix
and an a priori source term from [4], with added Gaussian noise.
be interpreted through a very unfavorable condition number of the
model matrix A After removing rows with very small norms, we are
left with the matrix shown in Figure 2(B). It is evident from the color
map that the remaining rows have much narrower dynamics. Even
so, the elements still differ by several orders of magnitude.

It is interesting to see that cleaning the matrix removes two
southernmost stations, as indicated in Figure 2. The CTBTO web-
site features a fascinating video explaining that the equator was
acting as a dividing line between the northern and the southern
hemisphere air masses [14]. This means that the measurement sta-
tions located on the southern hemisphere could not sense the cloud
since the could not pass the equator. Eventually the material got
transported to the southern hemisphere but in very small amounts.

3) Incorporating the natural constraints. The ingredients 1) and 2)
already give a reasonable result. We can find a regularization pa-
rameter λ in the program (5) that gives x̂ with correct release times.
But changing the regularization parameter yields a very different so-
lution and it is not clear how to properly choose λ. Furthermore,
both solutions shows unrealistic negative values. An obvious solu-
tion is to enforce the non-negativity constraint to get a new convex
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Fig. 4. Reconstruction of the emission rates using the proposed algorithm. Reconstructed rates are shown for the three considered heights.
Note that, the largest peaks are in correspondence of the venting events, considered to be the main responsible of the Xenon releases. The
timeline indicates events at the Fukushima NPP in the temporal window of interest and is built from numerous sources, listed on the Wikipedia
page for the Fukushima I Nuclear accident.

program,

x̂ = arg min ‖Ax− y‖22 + λ‖x‖1 subject to x � 0. (6)

This seems to stabilize the solution. We observe that the solution is
stable across a very wide range of lambdas.

Finally, a word on the choice of the regularization parameter. A
possible way to determine λ, is to compute the `1 and `2 norms in
(6) for the prior solution and estimate the regularization term based
on the ratio of these norms. Since the solution, and in particular the
support, varies little with λ, this is justified in the sense that it will
not bias the solution towards the initial guess.

4.1. Sensitivity test

Another way to assess the robustness of different methods is to
measure how sensitive they are with respect to errors in mea-
surements. To this end we simulated the reconstruction by the
Tikhonov-regularized program, regularization with the second
derivative smoothing, and the `1-based reconstruction (without
the positivity constraint) while adding different amounts of noise to
measurements. Measurements were generated using the real matrix
and the initial Xenon guess used in [4]. The `1-regularized approach
performs the best among the tested methods.

5. EXPERIMENTS WITH REAL DATA

We apply the proposed solution (6) to real data with the cleaned
matrix. The measurements and the matrix that we use are the ones
described in Section 3. We repeat that this experiment is completely
blind, not involving any prior information about the source except
that it is sparse and positive.

Before giving the results, let us try to argue why a successful
estimation would be surprising: If you look at tracer experiment re-
sults in [7], one can see that even though there is correlation be-
tween the measured and numerically predicted values, the variabil-
ity is considerable—often orders of magnitude. We would expect

all conventional algorithms to have great trouble estimating any-
thing reasonable (think compressed sensing reconstruction with ma-
trix elements orders of magnitudes wrong). The estimation is based
on measurements taken on different continents, thousands of miles
away from Fukushima. In spite of this, the combination of the three
described ingredients yields correct blind estimates of the accident
times, and the correct order of magnitude for the ejected amounts (as
verified against the solution in [4] and amounts estimated by other
parties [15]). The results are illustrated with respect to the timeline
of the Fukushima accident for all three heights in Figure 4. We see
that the algorithm correctly estimates major ventings, and in fact to
a good extent matches the a priori solution mentioned earlier, but
being completely blind. The waveforms also exhibit some peculiar
details. For example, there is a peak just after the earthquake, but
before official explosion. Could it be that already at that moment
some radioactive Xenon was released into the atmosphere?

6. CONCLUSION

We have successfully estimated the times and quantities of radioac-
tive Xenon emissions from the Fukushima power plant following
the March 2011 earthquake. The complete solution involves sparsity
promoting regularizations, as the observed Xenon emission wave-
forms consist of a few peaks and many very small elements. We
have shown that standard approaches from the dispersion model-
ing community lack of stability w.r.t. their a priori guess. Future
work involves testing of the sensitivity of our approach to model
mismatch, revisiting the results of the tracer-experiment verification
of FLEXPART, and repeating the experiment for Cesium.
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