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ABSTRACT

This paper considers identifiability and recoverability in bilinear in-
verse problems which is relevant to blind deconvolution and matrix
factorization. It is shown that bilinear inverse problems can be posed
as rank-1 matrix recovery problems subject to linear constraints.
Sufficient conditions for identifiability are developed for the cases
when rank-2 matrices are present in the null space of the linear op-
erator. Signal recovery using the nuclear norm heuristic for rank-1
matrix recovery is considered and simple conditions for success are
provided.

Index Terms— identifiability, bilinear inverse problems, matrix
recovery

1. INTRODUCTION

Blind deconvolution, matrix factorization, etc. are nonlinear inverse
problems of tremendous significance in signal processing. A key
question is when unique solutions to these bilinear inverse problems
exist. In this paper, we consider a rank-1 matrix recovery formu-
lation for these bilinear inverse problems, enabling the unification
of these problems. We address identifiability and our results can be
extended to incorporate further constraints such as sparsity or ap-
proximate bilinearity. Our characterization relies on the properties
of the null space of the linear operator acting on the rank-1 matrix
in question. For many cases of interest, this null space admits a
simple characterization. Further, the effect of additional constraints
can be readily inferred from the resulting change in the rank-2 null
space of the resultant linear operator. The formulation of the bilinear
inverse problem as low rank matrix recovery enables the use of nu-
clear norm minimization [1] to determine solutions via the existing
efficient convex optimization solvers.

We do not attempt to review the vast prior art on blind decon-
volution, dictionary learning and matrix factorization. Blind decon-
volution with smoothness and statistical priors has been surveyed
in [2, 3] and sparsity priors in [4]. While identifiability results for
blind deconvolution are overviewed in [5], incorporating sparsity is
not straightforward. Non-negative matrix factorization and identifi-
ability was examined in [6] exploiting geometry. To the best of our
knowledge, low-rank matrix recovery methods have not been applied
to study identifiability in these previous problems.

A common strategy employed in bilinear inverse problems is
based on alternatively holding one input fixed and solving for the
other (e.g. [7,8]). Such a heuristic converges to a fixed point [9] and
works well for certain applications (e.g. image processing); however,

This research has been funded in part by the following grants and organi-
zations: ONR N00014-09-1-0700, NSF CNS-0832186, NSF CNS-0821750
(MRI), NSF CCF-0917343, NSF CCF-1117896 and DOT CA-26-7084-00.

convergence is not robust to arbitrary initialization. For the context
of random channel coding, blind deconvolution with sparsity pri-
ors via a convex relaxation of rank-1 matrix recovery is developed
in [10] and some recoverability results are proposed in [11] under
the assumption of known support on one input. We exploit a sim-
ilar strategy herein for the more general bilinear inverse problem,
but do not assume any knowledge of sparse support. A necessary
and sufficient condition for successful recovery of all low-rank ma-
trices using nuclear norm minimization is developed in [12] which
could be specialized to rank-1 matrix recovery. While [13] shows
that this condition is likely to be satisfied with high probability for
random linear operators drawn from a suitable Gaussian ensemble,
the results do not carry over for bilinear inverse problems, as the
measurement matrices defining the respective problems are fixed and
not drawn from a distribution. We develop two sufficient conditions
on the input signals which, when satisfied, guarantee recoverability
by the nuclear norm minimization heuristic for the bilinear inverse
problem in question. These results are applicable even in the pres-
ence of rank-2 matrices in the null space of the linear operator.

Compressibility of the output of a bilinear system is examined
in [14, 15] and methods for original signal recovery from the com-
pressed signals are also developed. Our problem is more challeng-
ing: input signal recovery from the output of the bilinear system.
Finally, we note that identifiability in low-rank matrix completion is
studied in [16] using algebraic and combinatorial conditions; the ad-
ditional generality comes at the price of the complexity of the char-
acterization.

This paper makes the following contributions:

1. casting the bilinear inverse problem as a rank-1 matrix recov-
ery problem,

2. provision of sufficient conditions for identifiability based on
the null-space of the linear matrix operator, and

3. provision of sufficient conditions for recoverability using the
nuclear norm heuristic for rank-1 matrix recovery.

2. SYSTEM MODEL

2.1. Bilinear Maps

Definition 1 (Bilinear Map). A mapping S : Rm × Rn → Rp is
called a bilinear map if S(·,y) : Rm → Rp is a linear map ∀y ∈
Rn and S(x, ·) : Rn → Rp is a linear map ∀x ∈ Rm. If p = 1, S
is called a bilinear form.

We shall consider a generic bilinear system model,

z = S(x,y) , (1)
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where z is the vector of observations and S(·, ·) is a bilinear map.
Let φj : Rp → R be the j th coordinate projection operator. Clearly,
φj is a linear operator and hence the composition φj ◦ S : Rm ×
Rn → R is a bilinear form. Because S is a finite dimensional oper-
ator, it is a bounded operator. Hence ∃Sj ∈ Rm×n such that Sj is
the unique linear operator satisfying,

φj ◦ S(x,y) = 〈x,Sjy〉 , (2)

for all x ∈ Rm,y ∈ Rn. Here, 〈·, ·〉 denotes an inner product
operation. Specific examples of bilinear maps are very common in
signal processing applications. Some of them are listed below.

1. Linear and circular convolutions when both input vectors are
unknown,

S(x,y) = x ? y (Linear Convolution) , (3)
S(x,y) = x~ y (Circular Convolution) . (4)

2. Linear representation in an unknown dictionary,

S(Φ,y) = Φy. (5)

3. Matrix product when both matrices are unknown,

S(X,Y ) = XY . (6)

We observe that recovering x and y (or X and Y ) above is often
trivial or ill-posed without further constraints. Our objective herein
is to endeavor to characterize the types of constraints that render
these problems well-posed.

2.2. Bilinear Inverse Problems

Given a bilinear map S : Rm × Rn → Rp, we call the problem of
determining the vector pair (x,y) from the observation S(x,y) as
a bilinear inverse problem,

find (x,y)

subject to S(x,y) = z.
(P1)

In general, Problem (P1) is an ill-posed problem as a unique solution
is not guaranteed to exist and the recovery is not robust to noisy ob-
servations. A popular approach to make such problems well-posed
is to restrict the set of values that can be assumed by the pair (x,y),
denoted by (x,y) ∈ K for some setK (not necessarily convex). For
example, K might represent the set of pairs of sparse vectors up to
a certain sparsity. Sensible choices of K should depend on the un-
derlying application (see [17] for an example on blind deconvolution
for cooperative underwater acoustic communications). In Sections 3
and 4 we provide conditions, based on the null space of S, that the
constraint (x,y) ∈ K should encourage, so as to make Problem (P1)
well-posed.

Using (2), we can convert the bilinear constraint in Problem (P1)
into a set of p linear constraints as follows,

φj ◦ S(x,y) = 〈x,Sjy〉 = xTSjy

= Tr
(
yxTSj

)
=
〈
xyT,Sj

〉
,

(7)

for each 1 ≤ j ≤ p. Identifying xyT as an unknown matrix W with
rank(W ) = 1, Problem (P1) can be rewritten as,

find W

subject to rank(W ) ≤ 1,

〈W ,Sj〉 = zj , ∀1 ≤ j ≤ p.
(P2)

We have assumed that z 6= 0 so that xyT = 0 is not a feasible solu-
tion to Problem (P1). Under the assumption z 6= 0, the constraints
rank(W ) = 1 and rank(W ) ≤ 1 are equivalent. Finding W is
equivalent to finding the vector pair (x,y) up to multiplicative con-
stants. Conversion of Problem (P1) to Problem (P2) provides several
advantages,

1. Problem (P2) has linear equality constraints versus the bilin-
ear equality constraints of Problem (P1) facilitating optimiza-
tion. In particular, the tightest convex relaxation for the non-
convex rank constraint in Problem (P2) is well known [1].

2. The bilinear map is completely determined by the set of
matrices Sj and is separated from the variable W in Prob-
lem (P2). Thus, Problem (P2) can be used to study general
bilinear inverse problems.

3. For every bilinear inverse problem there is an inherent scaling
ambiguity, ∀α 6= 0, S(x,y) = S

(
αx, 1

α
y
)
. Problem (P2)

is invariant to this ambiguity when W = xyT is the vari-
able to be determined. Additional norm constraints on x or
y can be used to recover x and y from W , without affecting
Problem (P2).

2.3. Convex Relaxation

In the absence of any additional information about x and y, the best
convex relaxation of Problem (P2) is given by [1],

minimize
W

‖W ‖∗
subject to 〈W ,Sj〉 = zj ∀1 ≤ j ≤ p.

(P3)

Without loss of generality, we can assume that the mapping matrices
Sj are orthonormal 1. Problem (P3) is the convex relaxation heuristic
used for the low-rank matrix recovery problem in [18].

3. IDENTIFIABILITY RESULTS

We state conditions under which Problem (P2) yields a unique solu-
tion, i.e. the input is identifiable. Let S : Rm×n → Rp denote the
linear operator acting on the optimization variable W to generate
the p linear constraints in Problem (P2). So we have,

S
(
xyT

)
= S(x,y) , ∀x ∈ Rm,y ∈ Rn. (8)

We shall denote the set of all matrices of rank at most k in the null
space of S byN (S, k). Thus,

N (S, k) ,
{
X ∈ Rm×n

∣∣ rank(X) ≤ k, S(X) = 0
}
. (9)

In particular,N (S,m) represents the null space of S. For any matrix
M , we denote the row and column spaces by R(M) and C(M)
and the j th singular value in non-increasing order of magnitude by
σj(M).

We have the following necessary and sufficient condition for
Problem (P2) to succeed for all z = S(x,y),

Theorem 1. Problem (P2) will find the correct solution for every
observation z = S(x,y) if and only ifN (S, 2) = {0}.

1If not, then the mapping can always be made orthonormal with an ac-
companying change in z.
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Proof. Problem (P2) fails if and only if more than one matrix satis-
fies the desired constraints.

Assume N (S, 2) = {0} and suppose that W1 and W2 denote
two solutions to Problem (P2). Then, S(W1) = S(W2) so that
(W1 −W2) ∈ N (S,m). But, rank(W1 −W2) ≤ rank(W1) +
rank(W2) ≤ 2 so that W1−W2 = 0 and Problem (P2) has a unique
solution.

Conversely, let Problem (P2) have a unique solution for every
observation z = S(x,y). First we argue that N (S, 1) = {0}.
Suppose that 0 6= X ∈ N (S, 1). Then we would have S(X) =
0 = S(0) so that the observation z = 0 gives both X and 0 as
valid solutions to Problem (P2) leading to a contradiction. Thus,
N (S, 1) = {0}. Next, we argue that N (S, 2) = {0}. Suppose
that 0 6= Y ∈ N (S, 2) with the decomposition Y = Y1 − Y2

where Y1 and Y2 are rank-1 matrices. If we observe z = S(Y1)
then Y1 and Y2 are both valid solutions to Problem (P2) owing to
the equality S(Y1) = S(Y2) thus leading to a contradiction. Hence,
N (S, 2) = {0}.

Unfortunately, for certain bilinear inverse problems of interest
(like blind deconvolution), N (S, 2) 6= {0} (although we still have
N (S, 1) = {0}). Thus, we cannot hope to recover the correct solu-
tion for every observation z = S(x,y). We shall endeavor to char-
acterize which rank-1 matrices W result in observations z = S(W )
such that Problem (P2) finds the correct solution, and when the cor-
rect solution can be found efficiently by solving Problem (P3) instead
of Problem (P2).

First, we write Problem (P2) in a different (but equivalent) form
as below,

minimize
W

rank(W )

subject to S(W ) = z.
(P4)

Let M be a rank-1 solution to Problem (P2) given the observation
z = S(x,y). It is clear that M is a solution of Problem (P4)
as well. All other solutions to Problem (P4) must be of the form
(M +X) where X is in the null space of the linear operator
S. If M + X is another solution to Problem (P4) then we have
rank(M +X) = rank(M) = 1. Using the rank inequality
rank(M +X) ≥ rank(X) − rank(M), we get rank(X) ≤ 2.
Hence, it is sufficient to consider X ∈ N (S, 2) and both Prob-
lems (P2) and (P4) will have a unique solution if and only if the
following problem admits X = 0 as the only solution,

minimize
X

rank(M +X)

subject to X ∈ N (S, 2) .
(P5)

Theorem 2. Let M = σuvT be a rank-1 matrix in Rm×n such
that for every X ∈ N (S, 2) either u /∈ C(X) or vT /∈ R(X) is
true. Given the observation z = S(M), Problem (P4) successfully
recovers M .

Proof. Let M∗ be a solution to Problem (P4) such that M∗ 6= M .
Since M is a valid solution to Problem (P4), we have rank(M∗) =
rank(M) = 1 and X = M −M∗ ∈ N (S, 2). If M∗ = σ∗u∗v

T
∗,

then R(X) = Span
(
vT,vT

∗
)

and C(X) = Span(u,u∗). This con-
tradicts the assumption that at least one of u /∈ C(X) or vT /∈
R(X) is true. This completes the proof.

We consider an important special case when σ1(X) = σ2(X)
for all X ∈ N (S, 2). This special case is relevant to blind decon-
volution. We have the following necessary and sufficient condition
for the success of Problem (P4). As the proof is similar to that of
Theorem 2, we omit it here.

Corollary 3. Let M = σuvT be a rank-1 matrix in Rm×n. Sup-
pose that every matrix X ∈ N (S, 2) satisfying u ∈ C(X) and
vT ∈ R(X) admits a singular value decomposition with σ1(X) =
σ2(X). Let us denote such a decomposition as X = σ∗u1v

T
1 +

σ∗u2v
T
2, and let u = α1u1 + α2u2 and v = α3v1 + α4v2 for

some α1, α2, α3, α4 ∈ R with α2
1 + α2

2 = α2
3 + α2

4 = 1. Given
the observation z = S(M), Problem (P4) successfully recovers M
if and only if for every X ∈ N (S, 2) satisfying u ∈ C(X) and
vT ∈ R(X), α1α3 + α2α4 ≤ 0.

4. RECOVERABILITY RESULTS

If we strengthen the sufficient conditions for identifiability assumed
in Theorem 2 then we can obtain a similar result for recoverability
using Problem (P3). For the proof, we will need a result for norms
of partitioned matrices from [19] (Proposition 3). We state it below
for the special case of the nuclear norm of a 2 × 2 block partioned
matrix.

Theorem 4 (adapted from [19]). Let X be a 2×2 block partitioned
matrix given by,

X =

[
X11 X12

X21 X22

]
. (10)

Then, the following inequality is true,

‖X‖2∗ ≥ ‖X11‖2∗ + ‖X12‖2∗ + ‖X21‖2∗ + ‖X22‖2∗ . (11)

Theorem 5. Let M be a rank-1 matrix in Rm×n such that for every
X in the null space of S at least one of MXT = 0 or M TX = 0 is
true. Given the observation z = S(M), Problem (P3) successfully
recovers M .

Proof. Problem (P3) will recover M from the observation z =
S(M) if for all X ∈ N (S,m) \ {0}, the strict inequality
‖M +X‖∗ > ‖M‖∗ is satisfied. We define some notation. Let
M = σuvT. Let the columns of U⊥ (respectively V⊥) represent an
orthonormal basis for the orthogonal complement of u (respectively
v). Let Pu = uuT and PU⊥ = U⊥U

T
⊥ respectively denote the

orthogonal projection matrices onto the spaces spanned by columns
of u and U⊥. Let Pv = vvT and PV⊥ = V⊥V

T
⊥ respectively

denote the orthogonal projection matrices onto the spaces spanned
by rows of vT and V T

⊥ . For any matrix Y ∈ Rm×n we have the
identity,

Y = PuY Pv + PuY PV⊥ + PU⊥Y Pv + PU⊥Y PV⊥ . (12)

Let X ∈ N (S,m) \ {0} and assume that MTX = 0. Using (12),
we have

X = PU⊥XPv + PU⊥XPV⊥ . (13)
Because the nuclear norm is unitarily invariant, the nuclear norm of
(M +X) does not change if (M +X) is expressed in a different
basis. Using (u,U⊥) and

(
vT,V T

⊥
)

as the column and row bases
respectively for (M +X), we have

‖M +X‖∗
(a)
=

∥∥∥∥[ σ 0T

UT
⊥Xv UT

⊥XV⊥

]∥∥∥∥
∗

(b)

≥
√
σ2 + ‖UT

⊥Xv‖2
2
+ ‖UT

⊥XV⊥‖2∗
(c)
> σ = ‖M‖∗ .

(14)

where (a) holds due to change in the representation basis for
(M +X), (b) holds due to Theorem 4, and (c) is due to the fact
that if both UT

⊥Xv and UT
⊥XV⊥ are zero then X has to be the zero

matrix (from (13)), an impossibility as X ∈ N (S,m) \ {0}.
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A somewhat weaker sufficient condition can be derived if we
consider the subdifferential of the nuclear norm.

Theorem 6. Let M be a rank-1 matrix in Rm×n. Given the ob-
servation z = S(M), Problem (P3) successfully recovers M if∥∥U T
⊥XV⊥

∥∥
∗ >

∣∣uTXv
∣∣, for all X ∈ N (S,m) \ {0}.

Proof. The proof is quite straightforward and uses the concept of
subgradients from convex optimization. It is well known [20] that
the subdifferential ∂ ‖M‖∗ is given by,

∂ ‖M‖∗ =
{
uvT +Z

∣∣∣ ‖Z‖ ≤ 1, C(Z) ⊆ C(U⊥) ,

R(Z) ⊆ R
(
V T
⊥

)} (15)

and we have ∀G ∈ ∂ ‖M‖∗ and ∀X ∈ Rm×n,

‖M +X‖∗ − ‖M‖∗ ≥ 〈G,X〉 (16)

Problem (P3) recovers M if and only if M is the unique minimizer
of Problem (P3). For all X ∈ N (S,m) \ {0}, we have

0 <
∥∥∥UT
⊥XV⊥

∥∥∥
∗
−
∣∣∣uTXv

∣∣∣
(a)
= sup

‖Z‖≤1
C(Z)⊆C(U⊥)

R(Z)⊆R(V T
⊥)

〈Z,X〉 −
∣∣∣uTXv

∣∣∣
≤ sup

‖Z‖≤1
C(Z)⊆C(U⊥)

R(Z)⊆R(V T
⊥)

〈Z,X〉+
〈
uvT,X

〉

= sup
‖Z‖≤1

C(Z)⊆C(U⊥)

R(Z)⊆R(V T
⊥)

〈
uvT +Z,X

〉

(b)
= 〈G,X〉

(c)

≤ ‖M +X‖∗ − ‖M‖∗

(17)

for some G ∈ ∂ ‖M‖∗. In (17), (a) is due to the spectral norm being
dual to the nuclear norm, (b) is due to the fact that the subdifferential
for a convex function is a nonempty compact set and the supremum
over a compact set is achieved at some point in that set, and (c) holds
from (16).

5. A NUMERICAL EXAMPLE

We consider a constrained blind linear deconvolution example, mo-
tivated by cooperative communications in sparse channels [21], i.e.
z = x ? y, where x and y are both sparse vectors. While we have
not explicitly treated sparsity in the theoretical results, we shall see
that sparsity in the appropriate domain is more likely to satisfy our
needed null space conditions. It is NP-hard to check whether a given
realization of (x,y) satisfies the required null space conditions, so
we shall restrict ourselves to results averaged over independent real-
izations of the pair (x,y). For this case, the matrices Sk are given
by,

(Sk)ij =

{
1, i+ j = k + 1

0, otherwise
(18)

with p = m + n − 1. Sparse signals are generated and their linear
convolution is fed to the recovery Problem (P3) (solved using CVX).
We consider sparsity in two different bases, viz. the standard Eu-
clidean and Hadamard bases. As the solution to Problem (P3) is not,
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Fig. 1. Average approximation error vs. density for blind deconvo-
lution. The sparsity level is normalized w.r.t. mn.

in general, guaranteed to be a rank-1 matrix, we use the best rank-1
approximation of this matrix, and study the error performance ver-
sus sparsity. In Figure 1, we have density denoting the fraction of
representation coefficients being non-zero and m = n = 8, imply-
ing p = 15. For each sparsity level, in either representation, the sup-
port set is chosen via uniform random sampling without replacement
and the nonzero representation coefficients are chosen independently
from the distribution of |Y | where Y has a standard normal distribu-
tion. We study the Average Relative Approximation Error (ARAE)
metric given by,

ARAE =

〈∥∥∥M − M̂
∥∥∥

F

‖M‖F

〉
(19)

where M is the true solution, M̂ is the best rank-1 estimate of M
from solving Problem (P3), ‖·‖F denotes Frobenius norm, and 〈·〉
denotes averaging over 100 independent realizations.

We make the following observations. The ARAE steadily de-
creases with increasing density for both representation bases. For
the standard Euclidean basis, this trend has a simple interpretation in
terms of the null space of the linear convolution operator. This null
space has a basis comprised of sparse rank-2 matrices, and hence it
is very likely that the true sparse rank-1 solution is not even identifi-
able in most instances. Sparsity in the Hadamard basis, on the other
hand, ensures a dense representation in the standard Euclidean basis
via the uncertainty principle. These matrices are quite likely to sat-
isfy the sufficient conditions of Theorem 6. Hence, it is not surpris-
ing that the ARAE for the Hadamard basis is consistently lower than
that for the standard Euclidean basis and this difference decreases as
the normalized density increases, i.e. representation in the standard
Euclidean basis becomes more dense.

6. CONCLUSIONS

In this paper, we have studied identifiability and recoverability for
bilinear inverse problems from a rank-1 matrix recovery perspec-
tive. This treatment yields simple sufficient conditions for instance
identifiability and recoverability based on the rank-2 null space of
the linear matrix operator, when universal identifiability is impos-
sible. Future work shall consider identifiability and recoverability
for more specific constraints like sparsity, and approximately rank-1
matrix recovery problems for the cases of model mismatch and ob-
servation noise.
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