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ABSTRACT

We address the problem of blind separation of speech signals
with a microphone array. We demonstrate that a signal prop-
agating towards the array at an angle corresponds to inter-
channel phase difference (IPD) data that lies on a wrapped
line (i.e helix) in a circular-linear domain. Thus, the problem
reduces to that of fitting helices to data that lies on a cylinder.
However, outliers abound because of reverberation, noise, and
signal overlap in the time-frequency domain, so we perform
the clustering with a sequential variant of Random Sample
Consensus (RANSAC). We show that this method can eas-
ily be applied to arrays with many microphones and that it is
robust in reverberant experimental conditions.

Index Terms— blind source separation, circular statis-
tics, von Mises distribution, RANSAC

1. INTRODUCTION

The goal of this paper is to separate speech signals with an ar-
ray of microphones in reverberant conditions. Various meth-
ods exist to tackle this problem. Beamforming [1] aims to am-
plify energy arriving from one or more directions while sup-
pressing energy arriving at others. In contrast, time-frequency
(TF) masking techniques rely on the sparsity of speech in the
TF domain to partition audio mixtures into disjoint sets that
correspond to the source signals. The Degenerate Unmixing
Estimation Technique (DUET) [2] is one such approach that
was originally applied to the case of 2-channel source separa-
tion. MENUET (Multiple sENsor dUET) [3] extends DUET
to arrays with more than 2 microphones.

Although these methods are appealing, they fail to handle
the issue of spatial/phase aliasing. To address this, the authors
in [4] approximate inter-microphone delays by estimating the
derivative of phase with respect to frequency. Alternative
methods based on wrapped probability distributions explic-
itly model the phase differences between microphone pairs as
circular variables. The Modified Discrete Cosine Transform
(MDCT) was used in [5] to map the audio signals to a space
where a mixture of wrapped Laplacian distributions can de-
scribe the audio mixture. Finally, in [6], the authors modeled

phase differences of two signals with a two-component mix-
ture of von Mises distributions.

In this paper, we model the phase differences in each time-
frequency bin of the short-time Fourier transform (STFT)
with the von Mises distribution. In addition, we take ad-
vantage of the linear relationship between phase difference
and frequency to cluster the data by fitting multiple wrapped
lines (one for each source). We then construct time-frequency
masks based on this clustering to perform the separation.

The model-fitting step is challenging because phase infor-
mation is very noisy in real-world environments and cross-
over often occurs between the data corresponding to different
sources. For these reasons, local optimization methods such
as those in [3], [5] and [6] may fail to converge to a mean-
ingful solution. We instead apply a sequential variant of Ran-
dom Sample Consensus (RANSAC) to cluster the data. This
method is robust in reverberant experimental conditions and
can easily be used with many microphones.

The rest of this paper is organized as follows. In sec-
tion 2, we discuss the circular-linear model for inter-channel
phase difference data and cast the source separation problem
as one of circular-linear regression. In section 3, we describe
a sequential RANSAC algorithm and detail its application to
source separation. In section 4, we discuss how a phase-
wrapped model is beneficial and in section 5, we show ex-
perimental results. Section 6 concludes the paper.

2. CIRCULAR-LINEAR MODEL

2.1. IPDs as circular-linear data

We will use inter-channel phase differences (IPD) to distin-
guish between speakers. It was shown in [2] that blind source
separation is possible using just IPDs and inter-channel level
differences (ILD) with DUET. The primary assumption is that
the source signals are disjoint in a time-frequency represen-
tation, i.e. the energy in each bin of the mixture’s STFT is
dominated by one source. If this condition holds, the mix-
ture STFT can be partitioned such that only the bins assigned
to the jth source are used to reconstruct it (time-frequency
masking). In practice, speech signals are nearly disjoint.

In DUET, signals arriving at distinct angles are separated
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with a two-microphone array. The IPD information is calcu-
lated as the element-wise differences between the phase com-
ponents of the two channel STFTs X(i), i = 1, 2. These dif-
ferences are then normalized by frequency and collected in a
histogram in the range [−π, π]. Peaks will occur at IPDs cor-
responding to delays between the two microphones. Unfortu-
nately, delays of more than one sample cause phase-wrapping
that corrupts the IPD histogram. To remedy this, we omit
normalization and construction of the histogram and explic-
itly model phase differences as circular variables:

δ = 6 X(1) − 6 X(2) . (1)

A signal that arrives at an angle incurs a delay between the
microphones. By the delay property of the Fourier transform,
this corresponds to a phase shift in the frequency domain.
More shift will exist at higher frequencies, resulting in data
that lies along a wrapped line in a plot of frequency against
IPD. An example of this for a synthetic, anechoic mixture of
three sources is shown in Fig. 1(a) with the source lines su-
perimposed. When we reshape this plot as in Fig. 1(b), we
see that a wrapped line is essentially a helix in a cylindrical
domain. Thus, we can perform source separation by fitting
multiple helices to this data.

2.2. Circular-linear regression

From subsection 2.1, it is clear that the source separation
problem reduces to one of circular-linear regression. We first
look at the case of fitting a single wrapped line. Given N
measurements of two variables yi = (δi, fi) , i = 1, . . . , N ,
we would like to fit a wrapped line (a.k.a. barber-pole regres-
sion curve [7]) of the form δ = mod(α f , 2π) to this data. In
this paper, δ and f represent IPD and frequency, respectively,
and each yi corresponds to a single time-frequency bin.

We use the von Mises distribution [8] to measure error in
the circular variable δ. Its probability density function, pa-
rameterized by mean µ and concentration k, has the form

P (x|µ, k) ∝ ek cos(x−µ) . (2)

Now we can describe the helix-fitting problem. We wish
to find the slope α̂ that maximizes the sum of von Mises log
likelihoods in (3). Maximizing in (3) is equivalent to mini-
mizing a sum of distances in δ from the wrapped line to the
data. Note that µi = αfi depends on the data index i.

α̂ = argmax
α

N∏
i=1

P (yi|µi, k) = argmax
α

N∑
i=1

cos(δi − αfi)

(3)

Unfortunately, local optimization is unreliable here be-
cause of the many local maxima caused by outliers and wrap-
ping in the circular variable. This is especially true when fit-
ting multiple lines. It may also be prohibitively expensive in

(a)

(b)

Fig. 1. (a) IPD plot for synthetic mixture of three sources, col-
ored according to likelihood probability (see subsection 2.2).
(b) Equivalent cylinder visualization.

real-time applications with large arrays. We might be tempted
to scan over the space of all physically possible delays, but
this is unnecessary. Instead, we will use a data-driven search
strategy with random sampling.

3. CLUSTERING AND SOURCE SEPARATION

3.1. Sequential Random Sample Consensus

We now describe our method for clustering the IPD data.
Random Sample Consensus (RANSAC) [9] is known in the
computer vision community to be a robust method for esti-
mating simple models such as lines and circles in the presence
of outliers. The underlying principle is that the true model
can be described well by a number of data points. For a line
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Algorithm 1 Sequential RANSAC
Inputs: x : N data points

K : number of models to fit
Output: θ̂ : K source models

1: y =M samples from x selected uniformly at random
2: I = 0N×M

3: for i = 1 :M do
4: Fit model θi to yi
5: I(n, i) = 1 , ∀n s.t. xn is inlier of θi
6: θ̂ = {}
7: A = {1, . . . , N}
8: for j = 1 : K do
9: î = argmax

i

∑
n∈A

I(n, i)

10: θ̂ = θ̂ ∪ θî
11: A = A \ {n : I(n, î) = 1}
12: return θ̂

passing through the origin, which is the case we address in
this paper, we only need one point to fully specify the model.
To select the correct data for fitting, candidates (samples) are
chosen at random such that at least one of them coincides with
the true model with high probability.

We can ensure that a good model is fit with high probabil-
ity by selecting enough samples. The number M of samples
is determined by the expected number of trials E[t] until an
inlier is chosen. If the probability of choosing an inlier is p,
it can be shown ( [9] ) that E[t] = p−1. In practice, we set
M = C E[t], with C > 1 to ensure that an inlier is sampled.
In our experiments, we found that C = 10 was sufficient.

Fast, sequential variants of RANSAC have been proposed
to identify multiple planar homographies for a stereo imaging
application in [10] and [11]. We apply a similar approach
to perform multi-model, circular-linear regression (Algorithm
1). The process requires thatM be scaled proportionally with
the number of sources K and that once a source model is
chosen, all inliers be removed. Note that this algorithm makes
no assumptions about the form of the model θ and that, in our
particular application, θ takes the form of a wrapped line.

3.2. Blind source separation

To perform blind source separation, we extract IPD features,
cluster them, and construct probabilistic masks to reconstruct
the individual sources. We first discuss stereo unmixing and
then generalize to the case of two or more channels.

Phase differences between the two channels are calculated
as in (1), resulting inN phase difference-frequency pairs yi =
(δi, fi). Sequential RANSAC can now be applied to fit K
helices with slopes αj , as in Fig. 1. In our experiments, the
ith data point is considered an inlier of the jth helix if δi is
within ±π8 of the helix value µij = αjfi (modulo 2π).

To recover theK source signals, we apply time-frequency

Fig. 2. IPD plot of highly reverberant (T60 = 1.5 seconds), 2-
speaker stairwell recording. Sequential RANSAC succeeds in
identifying the source models in the presence of 65% outliers.

masks to one of the mixture STFTs. To calculate the masks,
probabilities are evaluated for every data point (i.e. time-
frequency bin) according to the von Mises likelihood criterion

∀ i, j wij =
P (yi|µij , k)
K∑
l=1

P (yi|µil, k)
=

ek cos(δi−αjfi)

K∑
l=1

ek cos(δi−αlfi)

, (4)

where µij = αjfi depends on both the data and helix indices.
These probabilities represent how likely it is that the ith

bin belongs to the jth source. To reconstruct source j, (4) is
multiplied by the corresponding bins in the mixture STFT and
the result is transformed to the time domain with the inverse
STFT. We can achieve more aggressive separation by increas-
ing the concentration parameter k. In the limit as k →∞, (4)
reduces to a maximum-likelihood binary mask where each bin
contributes to the reconstruction of a single source:

∀ i wbij =

{
1 if wij = max

l
wil

0 else
. (5)

We can also apply this technique with more than two
channels. In the case of three channels, two informative de-
lays are present from microphone pairs 1-2 and 1-3. The
corresponding IPD data has two circular axes instead of one.
This can only increase the inter-cluster distances, which leads
to better clustering. In this way, sequential RANSAC can
easily be applied to arrays with two or more microphones.

4. BENEFITS OF A PHASE-WRAPPED MODEL

There are two reasons why explicitly modeling wrapping in
the phase differences is advantageous. First, the circular-
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Fig. 3. Signal-to-distortion, signal-to-interference, and signal-to-artifact ratios for 2- and 3-channel source separation in a 2D
room and 4-channel source separation in a 3D room. c is the number of channels and K is the number of sources.

linear model allows delays of more than one sample. This is
useful in the physical world because microphone pairs need
not be very close to one another. The maximum allowed dis-
tance can be expressed as

d =
mv

s
, (6)

where m is the maximum expected delay, v is the speed of
sound, and s is the sampling rate. Note that 2m is the most
full wrap-arounds allowed in the IPD plot.

As shown in [2], the maximum inter-microphone distance
when s = 16000, v = 340, and m = 1 is d = 2.125
cm. Our method delivers reliable estimates for up to 6 sam-
ples of delay, for which the distance could increase six-fold:
d = 12.75 cm. This can be used for leveraging attenuation
information in reverberant environments that is not present
with closely-spaced microphones. Conversely, we can sepa-
rate high-quality audio with a sampling rate of 48 kHz using
an array with d = 4.25 cm.

A second advantage of wrapping is the increased separa-
tion of the data. Although some cross-over occurs in the IPD
plot, an increased separation overall improves the clustering
(especially in the low frequencies).

5. EXPERIMENTS

To test our method, we simulated a reverberant room with an
array of omnidirectional microphones placed at its centroid.
We mixed two-second audio clips of five speakers from the
TSP corpus [12] with speakers located at random but distinct
angles on the unit semicircle, unit circle, and unit sphere for 2-
, 3-, and 4-channel unmixing, respectively. The microphones
were positioned 5 cm apart in a right-angle configuration. We
ran 100 trials for K = {2, 3, 4, 5} speakers with randomly-
chosen sentences downsampled to 16 kHz. STFTs were cal-
culated with a 1024-sample window and 3

4 -overlap and the
overlap-add algorithm was used to invert them.

To simulate reverberation, we used the image method
[13]. The T60 time (required for reverberant energy to drop
60 dB below direct path energy) of the room was varied from

0 to 308 milliseconds. We tested 2- and 3-channel separa-
tion in a 2D room (5 × 5 m) and 4-channel separation in a
3D room (5 × 5 × 5 m). We evaluated the performance of
our method with the BSS Eval toolbox [14] using the indi-
vidual sources convolved with the appropriate room impulse
responses as the reference signals. This is so that we test for
source separation rather than de-reverberation.

Fig. 3 summarizes the average performance of our method
using a binary mask. These experiments show that increasing
the number of microphones improves the separation by reduc-
ing overlap in the IPD data. However, the decrease in perfor-
mance from 2D to 3D simulations suggests that early reflec-
tions have a noticeable impact on separation quality. Also,
the audio outputs remain reverberant, so further processing is
necessary to fully recover the original source signals.

To test our method’s robustness to severe, real-world re-
verberation, the authors recorded simultaneous speech with a
stereo iMic recorder in various indoor locations. The most
difficult case was in a stairwell with a T60 time of 1.5 sec-
onds. The IPD plot for this recording (Fig. 2) shows that the
algorithm succeeded in identifying the correct source models
even in such harsh conditions. Furthermore, a subjective as-
sessment confirmed that the speakers were indeed separated.

Finally, we note that the time complexity of Algorithm 1
is roughlyO (MN(3c+K + 1)), where M , N , c and K are
the numbers of samples, time-frequency bins, channels and
sources, respectively.

6. CONCLUSION

In this paper, we introduced a sequential RANSAC-based
method for blind, multi-channel source separation. It im-
proves on previous methods in three ways. First, the issue of
wrapping in the inter-channel phase differences as discussed
in [2] is mitigated by explicitly modeling phase as a circu-
lar variable. Second, source models are fit with a sampling
technique that is robust to outliers, which are common in
real-world audio data. And finally, the proposed algorithm
is shown to be trivially applied to arrays with any number of
microphones.
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