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ABSTRACT

This paper presents an efficient method for blind source separation of
convolutively mixed speech signals. The method follows the popular
frequency-domain approach, wherein researchers are faced with two
main problems, namely, per-frequency mixing system estimation,
and permutation alignment of source components at all frequencies.
We adopt a novel concept, where we utilize local sparsity of speech
sources in transformed domain, together with non-stationarity, to ad-
dress the two problems. Such exploitation leads to a closed-form
solution for per-frequency mixing system estimation and a numeri-
cally simple method for permutation alignment, both of which are
efficient to implement. Simulations show that the proposed method
yields comparable source recovery performance to that of a state-of-
the-art method, while requires much less computation time.

Index Terms— Blind Source Separation, Convolutive Mixture,
Speech Separation, Permutation Ambiguity

1. INTRODUCTION
1.1. Background

We consider blind separation of convolutive mixtures of speech
sources. This problem has attracted much interest, motivated by
real-world applications such as teleconferencing and mobile tele-
phony. Compared with the instantaneous mixtures, convolutive
mixtures are known to be more difficult to separate. One way to
tackle this problem is to employ the so-called frequency-domain ap-
proach [1, 2]: by transforming signals to the frequency domain, the
convolutive mixtures are decoupled into many per-frequency instan-
taeous mixtures and thus the existing blind source separation (BSS)
algorithms for instantaneous mixtures can be directly applied [3–6].

However, the difficulty of the frequency-domain approach lies
in implementation efficiency. First, by the frequency-domain ap-
proach, a frequency-dependent mixing system needs to be estimated
at each frequency. Hence, the computation load of the adopted BSS
algorithm is scaled up by the number of frequencies, which could
be very large. Second, after the mixing system estimation at each
frequency, a permutation alignment stage needs to be considered.
This is because that the estimated mixing systems may be permuted
differently from one frequency to another, which could result in
false alignment of frequency-components of sources and thus com-
promise the source recovery performance [2]. Permutation align-
ment usually involves solving highly nonconvex optimization prob-
lems [1,7] or clustering thousands of vectors with large size [8], both
of which may be time consuming. Thus, computationally cheap per-
frequency mixing system estimation algorithms and fast permutation
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alignment methods are desirable when dealing with practical blind
speech separation.

1.2. Review of Prior Works

Prior works adopt techniques such as independent component anal-
ysis (ICA) [9], joint diagonalizaton (JD) [2] or three-way tensor de-
composition [1, 8] to tackle the per-frequency mixing system esti-
mation problem. These techniques are developed based on the ex-
ploitations of the statistical independence between sources and time-
varying characteristics of source power profiles. For permutation
alignment, an arguably popular class of methods make use of the
fact that frequency-components of the same source are correlated
in some way, especially in neighboring frequencies. Such methods
are essentially based on evaluating the correlations between speci-
fied features of source components at adjacent frequencies, and then
aligning highly correlated ones together [1, 10]. Using the same in-
sight, various algorithms are introduced: in [9, 11, 12], besides the
local alignment between adjacent frequencies, a global adjustment
for all frequencies is also incorporated for better robustness; in [8],
K-means clustering is employed for efficiency improvement.

1.3. Contributions

In this paper, we focus on developing an efficient method for
frequency-domain blind speech separation. The distinguishing
feature of this work is that the local sparsity property of speech
sources, i.e., the local disjointness of source supports in transform
domain, is extensively exploited. Consequently, we come up with
efficient algorithms for both mixing system estimation and permuta-
tion alignment, which show different flavors compared with existing
methods. To be specific, we first propose to employ a recently
devised BSS algorithm [13] for per-frequency mixing system es-
timation. By exploiting the local sparsity, this algorithm admits a
closed-form solution to the per-frequency mixing system estimation
problem, rather than using iterative optimization algorithms as in ex-
isting methods. We then propose a local sparsity-based permutation
alignment method, which does not rely on the correlation evalua-
tions of source components and also admits an easy-to-implement
structure. Simulations in an artificial room using speech sources
demonstrate the efficacy of the proposed methods.

2. PROBLEM STATEMENT

Consider the convolutive mixture model [1, 2], i.e.,

x(t) =

τmax−1
∑

τ=0

A(τ)s(t− τ), t = 0, 1, 2, . . . (1)

where x(t) = [x1(t), . . . , xN (t)]T ∈ R
N denotes the received

signals by sensors, s(t) = [s1(t), . . . , sK(t)]T ∈ R
K denotes K
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mutually independent speech sources, τ is the index of delay, τmax

represents the maximal number of delays and A(τ) ∈ R
N×K rep-

resents the impulse response of the mixing system. When τmax = 1,
the signal model in (1) becomes the instantaneous mixture model.
We consider overdetermined mixing systems in this paper, i.e., N >
K. The objective is to recover s(t) from the mixtures x(t) with-
out knowing the mixing system. To achieve this goal, we employ
the frequency-domain approach [1, 8]. Specifically, by applying the
short time Fourier transform (STFT) on consecutive time blocks of
x(t), we can obtain an approximately instantaneous model at mul-
tiple frequencies fℓ, ℓ = 0, . . . , ℓmax − 1, where ℓmax denotes the
number of frequencies; i.e., we have

x̌ℓ(q) ≈ Aℓšℓ(q), q = 0, 1, 2, . . . , (2)

where Aℓ = [ a1,ℓ, . . . ,aK,ℓ ] ∈ C
N×K is a frequency-dependent

mixing matrix, ak,ℓ ∈ C
N denotes the spatial channel from source k

to the sensors at frequency fℓ, x̌ℓ(q) = [ x̌1,ℓ(q), . . . , x̌N,ℓ(q) ]
T ∈

C
N and šℓ(q) = [ š1,ℓ(q), . . . , šK,ℓ(q) ]

T ∈ C
K are the frequency-

components of the mixture and sources at fℓ, obtained by applying
STFT on the qth time block of x(t) and s(t), respectively. Readers
are referred to [1,8] for details of obtaining such transformed signals.

It is known that speech sources can be regarded as wide-sense
stationary signals in short durations [8] . Specifically, if we chop
šℓ(q) into short frames of length L and define the local covariance
of sources in frame m by

Dℓ[m] = E{šℓ(q)šℓ(q)
H}, q ∈ [ (m− 1)L+ 1,mL ],

the local covariance Dℓ[m] can be regarded as being static within
frame m. Since speech sources are generally non-stationary in
long term, Dℓ[m] varies from frame to frame. Note that due
to the independence assumption of sources, Dℓ[m] is a diagonal
matrix; i.e., we have Dℓ[m] = Diag(dℓ[m]), where dℓ[m] =
[d1,ℓ[m], . . . , dK,ℓ[m]]T is a power vector of sources at frame m
and dk,ℓ[m] = E{|šk,ℓ(q)|

2}, for q ∈ [ (m − 1)L + 1,mL ],
denotes the power of source k in frame m. We may also define the
local covariance of x̌ℓ(q) in frame m by

Rℓ[m] = E{x̌ℓ(q)x̌ℓ(q)
H} =

K
∑

k=1

dk,ℓ[m]ak,ℓa
H
k,ℓ,

where q ∈ [ (m−1)L+1,mL ]. In practice, Rℓ[m] can be estimated
by local sampling, i.e., Rℓ[m]≈(1/L)

∑mL

q=(m−1)L+1x̌ℓ(q)x̌ℓ(q)
H .

By the frequency-domain approach, the BSS problem amounts to
estimating Aℓ at each frequency fℓ using Rℓ[m]’s. This is merely
a BSS problem for instantaneous mixture, which has been exten-
sively studied [3–6]. However, when the number of frequencies
is large, the amount of computation resource for the BSS process
will be scaled up. Therefore, it is motivated to consider efficient
per-frequency BSS algorithms.

3. PER-FREQUENCY MIXING SYSTEM ESTIMATION

We propose to employ a recently devised BSS algorithm for the in-
stantaneous mixture model [13] at each frequency to estimate Aℓ.
This algorithm admits a closed-form solution and thus is very effi-
cient. In this section, we will briefly review this algorithm. The idea
is to exploit the local sparsity of sources in time-frequency domain;
i.e., we assume that

(A1)(local dominance) for each source k and at each frequency fℓ,
there exists a frame mℓk such that dk,ℓ[mℓk ] > 0 and dj,ℓ[mℓk ] =
0, ∀j 6= k.

Physically (A1) means that there exist frames at each frequency fℓ,
in which only one source is active and the others are inactive. In
other words, the source supports are locally disjoint at these frames
and thus these frames are dominated by one source. This assump-
tion is considered reasonable for sources like speech and audio,
which have been demonstrated to exhibit sparsity in transformed
domains [14, 15]. By (A1), in those frames locally dominated by
source k, the local covariances take a rank-one form; i.e., we have

Rℓ[mℓk ] = dk,ℓ[mℓk ]ak,ℓa
H
k,ℓ.

If these locally dominant covariances are identified, we can estimate
ak,ℓ by taking the principal eigenvector of Rℓ[mℓk ]; i.e., the esti-
mated mixing matrix Âℓ = [â1,ℓ, . . . , âK,ℓ] can be obtained by

âk,ℓ = qmax (Rℓ[m̂ℓk ]) , k = 1, . . . ,K, (3)

where qmax(X) denotes the principal eigenvector of X.
The local dominance-based BSS (LD-BSS) algorithm [13] aims

at identifying K locally dominant frames corresponding to different
sources. This algorithm can be described as follows. By vectorizing
all local covariances, we obtain

yℓ[m] = vec(Rℓ[m]) = (A∗
ℓ ⊙Aℓ)dℓ[m]

=

K
∑

k=1

dk,ℓ[m]a∗
k,ℓ ⊗ ak,ℓ,

where ⊙ and ⊗ denote the Khatri-Rao product and the Kronecker
product, respectively. Based on this structure of yℓ[m], it can be
shown that

‖yℓ[m]‖2
Tr(Rℓ[m])

=
‖
∑K

k=1 dk,ℓ[m]a∗
k,ℓ ⊗ ak,ℓ‖2

∑K

k=1 dk,ℓ[m]‖ak,ℓ‖22

≤

∑K

k=1 dk,ℓ[m]‖a∗
k,ℓ ⊗ ak,ℓ‖2

∑K

k=1 dk,ℓ[m]‖ak,ℓ‖22
= 1,

(4)

where the inequality is resulted from the triangle inequality of 2-
norm and the non-negativity of dk,ℓ[m]; the last equality is obtained
by the fact ‖a∗

k,ℓ ⊗ ak,ℓ‖2 = ‖ak,ℓa
H
k,ℓ‖

2
F = ‖ak,ℓ‖

2
2. Note that the

inequality in (4) holds if and only if dℓ[m] is a unit vector [13], i.e.,
frame m is locally dominated by a source at frequency fℓ. According
to this observation, we can do the following. Initially, we identify the
first locally dominant frame at frequency fℓ by

m̂ℓ1 = arg max
m=1,...,M

‖yℓ[m]‖2
Tr(Rℓ[m])

. (5)

Then, a successive approach can be employed to identify the re-
maining locally dominant frames at frequency fℓ. To present
the process, suppose that we have found k − 1 locally dominant
frames, indexed by m̂ℓ1 , . . . , m̂ℓk−1

. Also, denote Yk−1,ℓ =

[ yℓ[m̂ℓ1 ], . . . ,yℓ[m̂ℓk−1
] ] and let P⊥

X = I − X(XTX)†XT be
the orthogonal complement projector of X. Given these notations
and by similar derivations as in Eq. (4), it can be easily shown that

m̂ℓk = arg max
m=1,...,M

∥

∥

∥
P⊥

Yk−1,ℓ
yℓ[m]

∥

∥

∥

2

Tr(Rℓ[m])
, k > 1, (6)

corresponds to a frame locally dominated by a new source (not the
sources dominating frames indexed by m̂ℓ1 , . . . , m̂ℓk−1

).
In summary, the LD-BSS algorithm consists of Eq. (5)-(6),

which take closed-form expressions and involve only basic matrix
operations, such as 2-norm computation and multiplication. Hence,
this process can be carried out quite efficiently at each frequency.
This is a desirable feature for frequency-domain approach-based
speech separation, especially when ℓmax is large.

4316



4. PERMUTATION ALIGNMENT

One may notice that, although by Eq. (5)-(6) we can identify indices
of the locally dominant frames m̂ℓ1 , . . . , m̂ℓK at frequency fℓ, there
is no knowledge revealed about which source dominates frame m̂ℓk ,
according to the process. The scaling factor of ak,ℓ is also unknown
since the obtained âk,ℓ always admits unit 2-norm. In other words,
as in other BSS methods, the permutation and scaling ambiguities
exist when applying LD-BSS; i.e, we have

Âℓ = AℓPℓΛℓ,

where Pℓ is a permutation matrix and Λℓ is a full rank diagonal ma-
trix. It is necessary to compensate the effects brought by these two
ambiguities before doing source recovery. In practice, one may em-
ploy the minimum distortion principle (MDP) method to deal with
the scaling ambiguity. See [8, 11] and references therein. In the se-
quel, we will focus on solving the permutation ambiguity problem.

Our idea is, again, to make use of the local dominance frames,
by the observation that same frame is usually dominated by the same
source at neighboring frequencies. Specifically, if dk,ℓ[m] > 0
and dj,ℓ[m] = 0 for j 6= k, it is likely that dk,ℓ±1[m] > 0 and
dj,ℓ±1[m] = 0 for j 6= k, especially when the frequency grids are
dense. This means that the local power dominance relationship be-
tween sources exhibits some similarity at frequencies close by. In
this paper, instead of evaluating the correlations of source features
across frequencies as existing algorithms do, we exploit the domi-
nance similarity in local frames to come up with a simple method
with low implementation complexity.

Recall that at frequency fℓ, we have obtained an index set
of locally dominant frames by Eq. (5)-(6), denoted by Dℓ =
{m̂ℓ1 , . . . , m̂ℓK}, where m̂ℓk is the index of the kth identified
locally dominant frame, corresponding to the kth column in Âℓ.
The key insight is that if the same source dominates m̂ℓk at fℓ and
the neighboring frequency fℓ−1, we must have

dℓ[m̂ℓk ]

‖dℓ[m̂ℓk ]‖1
=

dℓ−1[m̂ℓk ]

‖dℓ−1[m̂ℓk ]‖1
, ∀m̂ℓk ∈ Dℓ.

In other words, the normalized source power vectors in frame mℓk

are identical unit vectors at frequency fℓ and fℓ−1. Therefore, the
permutation alignment problem amounts to permuting the estimated
source power vector in frame mℓk at fℓ, such that it can be aligned to
the source power vector at fℓ−1; i.e., by letting the estimated source
power vector be

d̂ℓ[m] = (Â∗
ℓ ⊙ Âℓ)

†
yℓ[m], (7)

we want to find a permutation matrix P̂ℓ, such that

P̂
T
ℓ

d̂ℓ[m̂ℓk ]

‖d̂ℓ[m̂ℓk‖1
=

d̂ℓ−1[m̂ℓk ]

‖d̂ℓ−1[m̂ℓk ]‖1
, ∀m̂ℓk ∈ Dℓ. (8)

Given the same source dominating m̂ℓk at frequencies fℓ and fℓ−1,
it can be easily verified that

P̂ℓ =

[

d̂ℓ−1[m̂ℓ1 ]

‖d̂ℓ−1[m̂ℓ1 ]‖1
, . . . ,

d̂ℓ−1[m̂ℓK ]

‖d̂ℓ−1[m̂ℓK ]‖1

]T

, (9)

can satisfy the identity (8). Note that if a source dominates frame
m̂ℓk at fℓ and fℓ−1 simultaneously, each column of such P̂ℓ only ad-
mits one non-zero element and thus is a permutation matrix. Eq. (9)
means that to remove permutation ambiguity at frequency fℓ, one

just needs to identify the indices of locally dominant frames at fre-
quency fℓ and compute the source power vectors in these frames at
frequency fℓ−1. As permuting the source power vector by P̂T

ℓ d̂ℓ[m]

is equivalent to permuting the columns of the mixing matrix by P̂ℓ,
we can remove the permutation ambiguity at frequency fℓ by using
ÂℓP̂ℓ as the permutation compensated mixing matrix.

The pseudo code of the permutation alignment process is pre-
sented in Algorithm 1. It can be seen that this permutation align-
ment procedure is quite simple to implement. The mapping process
in line 4 is added because in practice, owing to modeling errors, the
calculated P̂ℓ may not be a permutation matrix precisely. There-
fore, the closest (in Euclidean distance sense) permutation matrix to
it may serve as a good surrogate. Besides this approximation, we are
also aware of the possibility that the sequential alignment scheme
might suffer error accumulation [1]. Nevertheless, as an easily im-
plemented method, the proposed procedure exhibits quite satisfac-
tory performance, as will be demonstrated in the next section.

Algorithm 1: Local Sparsity-based Permutation Alignment

input : Âℓ, y[m], Dℓ, ∀ℓ,m;
1 for ℓ = 1, . . . , ℓmax−1 do
2 obtain d̂ℓ−1[m̂ℓk ], ∀m̂ℓk ∈ Dℓ, by Eq. (7);
3 construct P̂ℓ by Eq. (9);
4 map P̂ℓ to a permutation matrix P̃ℓ via Hungarian

algorithm 1.
5 align the permutation by Âℓ := ÂℓP̃ℓ;
6 end

output: {Âℓ}
ℓmax−1
ℓ=0 .

5. SIMULATION

In this section, we use simulations to demonstrate the performance
of the proposed local sparsity-based speech separation methods.
To build up convolutive mixtures similar to those obtained in real
world, we follow the image method in [17] to simulate a room with
sound reflective walls. This artificial room is set to have a size of
5m×3.5m×3m. One typical channel response (with reverberation
time T60 = 120ms) under such scenario is plotted in Fig. 1. We
set (K,N) = (4, 6) in our simulations. Sources are set in positions
(1, 0.8, 1.6), (1, 1.6, 1.6), (1, 2.4, 1.6) and (1, 3.2, 1.6); sensors
are in (4, 0.5, 1.6), (4, 1, 1.6), (4, 1.5, 1.6), (4, 2, 1.6), (4, 2.5, 1.6)
and (4, 3, 1.6). We create a noisy environment by adding Gaussian
distributed noise to the received signal x(t).The source data base
provided by [8] is employed, which contains 8 cleanly recorded
speeches. Each source in this data base is 16KHz sampled and we
truncate them into 10 seconds. In each independent trial in simula-
tions, we randomly choose K sources from this data base and the
results are obtained by averaging 50 trials.

We implement the local sparsity-based speech separation by the
following steps: 1) transform x(t) into ℓmax = 2048 frequencies by
STFT; 2) estimate Rℓ[m] at each frequency; 3) estimate the mixing
system by LD-BSS [i.e., Eq. (5)-(6)], apply scaling and permuta-
tion alignment methods (MDP and Algorithm 1) to obtain Âℓ, and
let Wℓ = Â

†
ℓ at each frequency; 4) apply inverse discrete Fourier

transform on {Wℓ}
ℓmax−1
ℓ=0 to obtain the deconvolution matrix filter

W(t). Note that in practice, we prewhiten Rℓ[m]’s at each fre-
quency before step 3). This is because that prewhitening has been

1Hungarian algorithm is a fast solver for mapping (or matching) prob-
lems. For details and MATLAB implementation, see [16].
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Table 2: The SIRs and running times, under various T60s. (K,N) = (4, 6); SNR= 25dB.

`
`

`
`

`
`

`
`

`̀
Method

T60 (ms)
100 110 120 130 140 150 160

LD-BSS SIR (dB) 20.95 20.55 18.95 16.59 15.15 13.32 10.51
& Tm (Sec.) 3.37 3.31 3.30 3.24 3.21 3.14 3.27

Algo. 1 Tp(Sec.) 0.38 0.38 0.40 0.40 0.41 0.38 0.41
LD-BSS SIR (dB) 18.12 19.02 16.73 17.41 15.19 14.51 13.45

& Tm (Sec.) 3.16 3.12 3.17 3.31 3.25 3.20 3.17
K-means Tp (Sec.) 3.82 3.94 4.12 3.94 4.08 4.18 3.94

PARAFAC-SD SIR (dB) 17.52 17.91 17.56 17.21 15.27 14.31 13.45
& Tm (Sec.) 14.12 14.48 14.56 15.02 15.12 15.13 15.09

K-means Tp (Sec.) 3.80 3.91 3.96 4.05 4.01 3.92 3.92

Table 1: The SIRs and running times, under various SNRs;
(K,N) = (4, 6); T60 = 120ms.

X
X

X
X

X
X

XX
Method

SNR
0 10 20 30 40

LD-BSS SIR (dB) 6.36 10.93 15.80 20.18 19.94
& Tm (Sec.) 2.77 2.76 2.76 2.75 2.76

Algo. 1 Tp (Sec.) 0.90 0.71 0.37 0.32 0.32
PARAFAC-SD SIR (dB) 8.56 12.55 15.44 18.66 18.95

& Tm(Sec.) 17.33 16.29 13.74 12.08 11.35
K-means Tp (Sec.) 5.52 4.20 3.34 3.28 3.21
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Fig. 1: The channel response between position (1, 0.8, 1.6) and
(4, 0.5, 1.6) in the artificial room.

found helpful in improving the robustness of LD-BSS to modeling
errors, such as source correlations. For details of modeling error re-
duction and the prewhitening technique, readers are referred to [13]
and references therein.

The recovered signal-to-interference ratio (SIR) averaged across
sources is adopted as the performance measure. The SIR of recov-
ered source i is defined as [8],

SIRi = 10 log10

∑

t
ŝ2ii(t)

∑

t

∑

k 6=i
ŝ2ik(t)

,

where ŝik(t) =
∑N

n=1 Win(t) ⋆ x̃nk(t), x̃nk(t) is the recorded
signal at sensor n when only source k is active and ⋆ denotes the
linear convolution operator.

Table 1 shows the output SIRs and running times of the local
sparsity-based BSS package (including the LD-BSS for Aℓ estima-
tion and the proposed permutation alignment method, denoted by
“LD-BSS & Algo. 1”) under various SNRs, when the reverbera-
tion time is fixed to be 120ms and the average input SIR (i.e., the
SIR without separation process) is −5.03dB. We benchmark the

proposed approach by a state-of-the-art BSS package [8], which
includes the parallel factor analysis via simultaneous diagonal-
ization (PARAFAC-SD)-based Aℓ estimation [5] and the K-means
clustering-based permutation alignment (denoted by “PARAFAC-
SD & K-means”). By clustering, centroids of source features at all
frequencies are determined so that sources at each frequency can
be aligned to their most correlated centroids. In this simulation,
the “dominance measure” feature in [9] is employed for clustering.
It can be seen that the proposed local sparsity-based BSS package
yields comparable SIRs to the benchmarked method in this scenario.
In particular, when SNR< 20dB, the benchmarked package slightly
outperforms the proposed package, while when SNR≥ 20dB, the
SIRs of these two methods are quite on a par. In Table 1, it can
also be seen that the advantage of the proposed methods lies in the
computational time. From the mixing system estimation time (Tm)
and the permutation alignment time (Tp) listed in Table 1, it can
be seen that the LD-BSS and proposed permutation alignment re-
quire much less time compared to that of the benchmarked methods.
Specifically, in this scenario, the LD-BSS can be around 5 times
faster than the PARAFAC-SD method and the local sparsity-based
permutation alignment algorithm is around 10 times faster than the
K-means clustering-based algorithm.

We are also interested in testing the algorithms under differ-
ent reverberation times (T60). Generally, higher T60 values means
more critical environments for source separation. The results are
shown in Table 2. It can be seen that when T60 ≤ 130ms, the pro-
posed method performs best in terms of both SIR and running time.
When T60 increases, the benchmarked package outputs slightly bet-
ter SIRs. One way to get a trade-off between implementation effi-
ciency and robustness to reverberation is to combine the LD-BSS
and the clustering-based permutation alignment. In Table 2, it can
be seen that such combination (denoted by “LD-BSS & K-means”)
can yield better SIRs than the benchmarked method when T60 ≥
150ms, with much less running time in total.

6. CONCLUSION

In conclusion, we have proposed an efficient method for local
sparsity-based blind speech separation, using the frequency-domain
approach. Specifically, we first proposed to apply the LD-BSS
algorithm for mixing system estimation at each frequency. Then,
a simple permutation alignment method with low implementation
complexity was presented. Such simplicity stems from the exploita-
tion of local disjointness of the source supports. Simulations in
an artificial room have illustrated that the proposed methods are
not only capable of recovering speech sources from convolutive
mixtures with good SIRs, but also are computationally much more
efficient than a state-of-the-art method.
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