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ABSTRACT

In this paper, we demonstrate that recently-developed sparse recov-
ery algorithms can be used to improve source localization in rever-
berant environments. By formulating the localization problem in the
frequency domain, we are able to efficiently incorporate informa-
tion that exploits the reverberation instead of considering it a nui-
sance to be eliminated. In this formulation, localization becomes
a joint-sparsity support recovery problem which can be solved us-
ing model-based methods. We also develop a location model which
further improves performance. Using our approach, we are able to
recover more sources that the number of sensors. In contrast to con-
ventional wisdom, we demonstrate that reverberation is beneficial in
source localization, as long as it known and properly accounted for.

Index Terms— compressive sensing, joint sparsity, microphone
array, reverberation, source localization

1. INTRODUCTION

Recent work on compressive sensing and sparse representations has
provided new powerful theory and tools for signal acquisition and
processing applications. Efficient sparse and model-based sparse re-
construction is now possible using a number of new algorithms and
signal models, which are able to capture a large variety of the signals
we are interested in processing.

In this paper we examine how these new algorithms can be
applied to improve source localization in broadband reverberant
environments. Specifically, we propose a model-based sparsity-
enforcing method which enables us to capture the reverberant char-
acteristics of the environment and to localize more sources than the
number of sensors. Our approach operates in the frequency do-
main, taking into account the frequency response of the environment
and, accordingly, formulating a separate narrowband localization
problem at each frequency. To ensure that all problems share infor-
mation and provide a consistent localization output, we enforce a
joint-sparsity constraint across the problems.

This approach extends and improves earlier work [1], which
used simple joint-sparsity models in anechoic environments. In ad-
dition, we further enhance the model using a source location model
which takes into account the fundamental localization ambiguity due
to the array configuration. We also demonstrate that, in contrast to
conventional wisdom, reverberation can be beneficial in source lo-
calization, as long as it is known and properly accounted for. Note
that the assumption that the reverberation is known is also investi-
gated in previous work on the reconstruction of more sources than
sensors [2].
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Our work builds on recent theoretical and algorithmic results on
compressed sensing (CS) and sparse representations [3,4], including
model-based CS [5]. We also capitalize on earlier sparsity-based
work on sensors arrays [6,7], focused either on narrowband arrays or
on broadband arrays observing signals with a time-sparse structure.

There is a large body of work on localization of audio sources,
e.g., [8-10]. Previous works generally do not assume knowledge
on reverberation conditions but attempt to be robust to reverbera-
tion effects, which are considered a distortion to be accounted for.
Thus, their performance decreases as reverberation time and inten-
sity increases. Instead, we demonstrate that, when the reverberation
is known, it can be beneficial if properly exploited, improving local-
ization performance.

2. BACKGROUND IN JOINT-SPARSITY MODELS

Sparsity has recently emerged as a powerful tool in signal process-
ing applications. A sparse model assumes that a signal, when trans-
formed to an appropriate basis, has very few significant coefficients
which can explain most of its energy. Promoting sparsity in some
appropriate domain has proved to be a very efficient computational
method to capture the structure of most natural and man-made sig-
nals processed by modern signal processing systems.

Sparsity is typically useful when inverting a linear system—
usually underdetermined—of the form

y = Ax, (1

where y is the M -dimensional measurement vector and x is the N
dimensional sparse signal vector. For an underdetermined system,
the following optimization determines the sparsest solution:

X = argmin ||x||o s.t. y = Ax, 2)
X

where the ¢y norm counts the number of non-zero coefficients of x.
This is a combinatorially complex problem, but under certain condi-
tions on A, solution is possible in polynomial time using a convex
relaxation of the ¢y norm [3, 4] or one of the many greedy algo-
rithm developed over the recent years. These include the orthogonal
matching pursuit (OMP), the Compressive Sampling Matching Pur-
suit (CoSaMP) [11], the Subspace Pursuit (SP) [12], and the iterative
hard thresholding (IHT) [13].

Joint- and group-sparsity models, and their variations, provide
further structure to the signal of interest [5, 14-25]. Joint sparsity
can be considered as a special case of group sparsity, thus we only
describe the latter. Under this model, the signal coefficients are
partitioned into groups G;, which partition the coefficient index set
{1,...,N}. The group-sparsity model assumes that only a few of
these groups contain non-zero coefficients, and most groups contain
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all-zero coefficients. Group sparsity can also be enforced using a
convex optimization problem or one of many greedy algorithms.

In joint-sparsity models, several sparse signals are measured to-
gether. The model assumption is that all the signals share the same
sparsity pattern. In other words, the significant signal coefficients
are located at the same positions for all signals. By considering the
whole acquisition as a linear system, it is straightforward to show
that these models are a special case of group-sparsity models and a
similar approach can determine the sparse output.

Model-based compressed sensing [5] further enables models
with more complex constraints and structure than typical sparsity
or group-sparsity problems. As shown in [5], it is straightforward
to modify standard algorithm such as CoSaMP [11] to enforce
model-based sparsity. All that is necessary is a model-based thresh-
olding function, which replaces the standard thresholding function
in standard algorithms, and truncates the signal according to the
model. Indeed, in this paper we modify CoSaMP with a model-
based truncation which enforces both a joint-sparsity model and a
signal location model we develop.

3. MODEL
We consider M sensors, each receiving a signal yn,(t), m =
1,..., M, where t denotes a time index. We discretize the area of
interest to /N gridpoints, indexed usingn = 1, ..., N. Each of those

points is a potential source location, emitting a signal z,(¢). This
signal is exactly equal to zero if there is no source in that location
and non-zero if a source emits from that location.

In a reverberant environment, the signal z,, (¢) from each source
n arrives to each sensor m through multiple paths. Assuming the
sources and sensors are omnidirectional, the contribution Z, (t) of
source n to the signal received at sensor m, which we shall refer to
as the source image of n at m, can be represented as the convolution
of the original signal at source n with a filter amn (¢) referred to as
the room impulse response (RIR) for that pair of source and sensor:

Zrmn (t) = (@mn * 20)(2). 3)

Directionality of the sensors can be incorporated in amr (t), while
that of the sources can be handled by extending the grid.

If the window of analysis is sufficiently long, typically longer
than the length of the RIR, the relationship between the source sig-
nal, the source image and the RIR can be reasonably well approx-
imated in the frequency domain using the narrowband approxima-
tion: ~

X (W) = Apmn (W) Xn (W), @

where w denotes the discretized angular frequency, and Xonns Amn
and X,, denote the discrete Fourier transform (DFT) of the win-
dowed Zyn, Gmn and ., respectively.

Summing over the contributions from all potential sources, we
model the signal received at sensor m as:

Yo (@) & Y Amn (@) Xn(w), )

which can be rewritten, for each w, as a matrix multiplication
Y (w) & Aw)X(w), (6)

where the data vector is Y (w) = [Y1(w),...,Ya (w)]” and the
source vector is X(w) = [X1(w), ..., Xn(w)]”. This model gen-
eralizes that in [1] to reverberant environments. We further assume
that sources are broadband and that at most K of them exist in the

scene at any time, where K is much smaller than N. The number
of sources K might or might not be known in advance. Broadband
sources emit signals in a wide bandwidth, i.e., X, (w) is non-zero
for a wide range of possible w’s.

The localization problem can be formulated as that of estimating
the support of X (w) given the mixing matrix A (w) and the observed
signals Y (w). As we assume that there are only a small number of
active sources compared to the total number of grid locations, the
vector X (w) is sparse, and recovery of the support of X(w) can be
considered as a classical compressed sensing problem. Furthermore,
this support, or sparsity pattern, is common to all frequencies w, or,
in other words, the vectors X (w) are jointly sparse.

Under the broadband assumption, it is possible to identify the
location of more than M sources using M sensors, although not
necessarily reconstruct all M of them. The ambiguities that arise in
the single frequency case manifest themselves for different locations
at different frequencies. The joint-sparsity model exploits these dif-
ferences to resolve these ambiguities and localize the sources.

4. ALGORITHMS

4.1. Location model

Even when considering the jointly sparse model, the coherence of
columns of the matrix A (w) corresponding to neighboring loca-
tions can be high, impairing the performance of the system. If two
sources are close to each other, localization and recovery become an
ill-conditioned problem. Furthermore, if the discretization of the lo-
calization grid is very fine when compared to the coherence pattern
of the array, nearby locations will look very similar to the location
of an actual source, often confusing the recovery algorithm and hin-
dering its ability to localize weaker sources.

Fortunately, it is unlikely in practice for two sources to be suffi-
ciently close to each other as measured by the coherence pattern of
the array. By actively enforcing a location model preventing sources
from being too close to each other, the localization performance in-
creases dramatically. This can be performed at each iteration of any
greedy algorithm whenever a truncation is performed, simply by per-
forming a model-based truncation [5].

The model-based truncation we enforce ensures that no two
identified support locations are close to each other. Given a signal
X, our truncation, denoted T'(X, K'), simply returns K support
locations, greedily starting from the grid point with maximum total
energy, each time discarding all points in the neighborhood of the
selected point before making another selection.

4.2. Joint-sparsity and model-based CoSaMP

As described above, the signal X (w) only contains at most X non-
zero components (i.e., it is K -sparse) which have the same support
in all frequencies. Under this formulation, localization becomes a
joint-support recovery problem [6] and signal recovery becomes a
joint-sparsity recovery problem.

Recent work in group- and joint-sparsity problems has demon-
strated that the principles from simple-sparsity problems can be
transferred to joint-sparsity ones if the norms in convex formula-
tions and the truncations in greedy algorithms are not computed
on each signal vector independently but on vectors comprising the
energy of each of the groups in the support. Specifically, in our case,
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Algorithm 1 The modified joint-sparsity CoSaMP algorithm used in
the experiments in this paper.

initialize

Iteration count [ = 0, _

Initial signal estimate X' (w) = (0), for all w

Initial support estimate set S’ = 0.

while not converged do
Increase iteration count: [ <— 1 + 1 N
Compute residual: R(w) = Y (w) — A(w)X' ™! (w), for all w
Compute gradient: G'(w) = A (W)R(w)
Compute proxy: p = E(G") {asin (7)}
Identify support candidate: 7' = T (p,2K) U S'~*
Invert over support: B! (w) = A;l (w)Y (w), for all w
Compute final support: S' = T(E(B'), K)
Truncate and update estimate: X' (w) = B(w) |sl

end while N

return Signal estimate X' (w), support estimate S’.

we consider a vector energy function

(B(X)), = /> 1 Xu(w). ©)

Minimizing or constraining the £y or the 1 norm of E(X)—also
known as the mixed £ /¢ or £1 /2 norm of X with respect to group-
ing defined by w—subject to Y (w) ~ A(w)X(w) for all w gen-
erates solutions with common support structure, i.e., jointly sparse
with respect to the support of each X (w).

To compute the joint-sparsity pattern in the experiments in
the remainder of this paper, we use a variation of model-based
CoSaMP [5, 11] described in Algorithm 1. This algorithm uses a
model-based truncation which operates on the energy signal as de-
scribed above. This enables to separate the impact of two different
models: the joint-sparsity model and the location model.

We found experimentally that recovery performance is improved
if appropriate normalizations of the columns of the matrix A(w)
are used in the residual, inverse and gradient steps. Specifically, if
A, (w) denotes the n'™ column of A (w), we obtained best perfor-
mance when using, for the residual and inverse steps, a normaliza-
tion over frequencies and sensors for each grid position: A, (w) =

A, (W)/\/wa m | Amn (w)|2, and, for the gradient step, a normal-

ization over sensors only: A/, (w) = Yo [ Amn (W)]2.

The algorithm returns both a location estimate and a signal es-
timate. As mentioned earlier, under the broadband assumption, it is
possible to identify the location of more than M sources using M
sensors, but not necessarily to reconstruct all of them. For localiza-
tion, the joint-sparsity model is able to resolve the ambiguities that
arise at each frequency by exploiting their differences. However, full
system inversion to recover the source signal and not just its support
is not always possible unless all individual A (w) are invertible over
the recovered support set or there is prior information or a model on
the sources.

5. EXPERIMENTS

5.1. Setup

We conducted a series of simulations to evaluate the localization per-
formance of our method. The task was to recover the location of
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Fig. 1. Room setup.

Table 1. RT60 (ms) for each absorption coefficient c.

c ‘ 0.1 02 03 04 05 06 0.7 08 09 1.0
RT60‘412 208 139 104 79 56 51 41 29 9

multiple sources in a room given the mixed signals observed at three
microphones. The number of sources was assumed known, and rang-
ing from 1 to 14. We considered a rectangular room of dimensions
3.0 m x 2.0 m, as shown in Fig. 1, where the roof and floor were
assumed anechoic. Two microphones were placed 15 cm to the left
wall and 5 cm on each side of the median line, and a third one 1 m to
the right wall on the median line. We considered as potential posi-
tions for the sources a 5 cm grid from 0.8 m to 1.5 m of the left wall,
and from the bottom to the top wall. Source positions were randomly
selected while ensuring that they are no less than 20 cm apart from
each other. Localization of a source was assumed correct when the
estimated location was the exact same point on the grid as the true
source location, and incorrect otherwise. Figure 1 shows an example
of configuration for 5 sources together with the neighorhoods cor-
responding to the location model. Source signals were assumed to
be white Gaussian noise. The simulation results we report here are
averaged on 100 experiments for each number of sources.

Room impulse responses (RIR) for all pairs of source positions
and microphones were simulated using the Roomsimove toolbox!,
with a 16 kHz sampling rate and assuming omnidirectional sources
and sensors. Note however that directionality of both sources and
sensors could be included in our model, for the sources for exam-
ple by augmenting the grid to include discrete directions, and for
the sensors simply by including directionality in the RIRs. Absorp-
tion coefficients for all walls were assumed equal, and varied from
¢ = 0.1to ¢ = 1.0. The corresponding RT60 for a left-wall micro-
phone and a source on the median line at 0.8 m of the left wall are
shown in Table 1. Source images (contribution of a source) at each
microphone were computed by convolving source signals with the
corresponding RIR in the time domain.

We considered two types of signals: in the one denoted “raw
data”, invalid parts of the convolution are discarded, which amounts
to assuming that we observe part of the convolution of an infinite
source signal with the RIR; in the one denoted “known tail data”
(KT), we assume that the source signal is of finite length, and that
the source image at the microphone includes both the onset and the
tail of the signal due to reverberation. This is arguably an ideal situ-
ation that could approximately occur in a forward-backward frame-
work where the contributions of the signal from both the previous
and next frame can be estimated. The raw data is used by default
unless otherwise specified. We assumed that various lengths 7" of

Uhttp://www.irisa.fr/metiss/members/evincent/Roomsimove.zip
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signals could be observed at the microphone: 512, 1024, 2048 and
4096 samples. The KT data was assumed to be obtained by con-
volving a signal of length 7" with the RIRs and truncated at 27". For
consistence, the raw data was assumed to be of length 7" and the
DFT was computed after zero-padding to 27". We did not however
notice a significant impact of zero-padding on performance.

5.2. Results
5.2.1. Influence of the room reverberation time

We first investigate the influence of the room RT60 on localization
performance. We expect a decrease in the absorption coefficient ¢
of the walls, i.e., an increase in reverberation time, to decrease the
coherence of the mixing matrices A (w), and thus to result in an in-
crease in localization performance. Indeed, as shown in Fig. 2 for
T = 4096, lower c, or higher RT60, leads to dramatically better per-
formance for all numbers of sources than lower RT60, in particular
the anechoic case ¢ = 1. Similar results were obtained for other
values of T'.

5.2.2. Introduction of a location model

Next, we compare the performance of our method with and with-
out using a location model (LM) preventing estimated sources to be
strictly closer than 20 cm to each other. As can be seen in Fig. 3
(c = 0.3), introducing a location model drastically improves per-
formance, by up to almost 30 % absolute in the case of 14 sources
for T = 4096. We can also see on this figure how performance
improves with the window length.

5.2.3. Enforcing length limitation

We finally compare the localization performance in the realistic case
of the raw data and in the ideal case of the KT data. In the latter,
the original source data being of finite length, we investigated the
possibility of enforcing that the recovered time-domain sources were
also of finite length, in another flavor of model-based truncation. The
algorithm only needs to be modified by introducing an extra step in
the computation of the source estimate, which consists in taking the
inverse DFT, truncating to finite length 7" by setting Z(t) = 0 for
t € [T+1, 2T and taking the DFT. Performance on raw data and KT
data using the original algorithm and on KT data using the modified
algorithm with finite length truncation (FLT) is shown in Fig. 4 for
¢ = 0.3. The improvements obtained with KT data and using FLT
are mainly seen for short signal lengths. For T" = 4096, trying to
exploit some knowledge gained on the source signals in neighboring
frames may lead to some improvement, but FLT is likely not to help.

6. CONCLUSION

As we demonstrate, sparse recovery algorithms can be exploited to
localize sources in reverberant environments. A joint-sparsity for-
mulation in the frequency domain can properly account for the re-
verberation. Thus, many more sources than sensors can be accu-
rately located. In contrast to conventional wisdom, we demonstrate
that reverberation, if it is accurately known and properly exploited,
helps instead of hurting. Our work only scratches the surface and
raises a number of interesting questions. For example, we often do
not know the RIR; future work will investigate its estimation and
adaptation to room conditions. Furthermore, we only localize the
sources. Reconstruction is not straightforward; it is also deferred to
future publications.
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