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ABSTRACT

The solution of speech related problems such as source loca-
tion or separation relies on a prior estimation of the number of
sources. In this paper we propose a method for speech source
enumeration based on the different relative delays that sources
at different locations register at two microphones. The Proba-
bility Density Function (PDF) of the estimated delays exhibits
peaks associated with each source. The Minimum Descrip-
tion Length (MDL) criterion is applied to the prediction error
of a linear model fitted to the delay estimates. The method
is validated for the estimation of different number of sources
and different mixtures.

Index Terms— Source enumeration, Array signal pro-
cessing, Microphone array, Speech source separation.

1. INTRODUCTION

Speech source enumeration is a problem that remains largely
open and unsolved. Determining the number of speech
sources is a critical first step when solving other speech-
related problems such as source location or the so-called
Blind Source Separation (BSS), where many of the proposed
algorithms assume the number of sources known in advance.

There are many different approaches to signal enumera-
tion, and those based on information theoretic criteria have
largely been used in array signal processing [1]. Two such
criteria for order estimation of an observed process are the
Akaike Information Criterion (AIC) [2] and the Rissanen’s
Minimum Description Length (MDL) principle [3], which
have inspired many algorithms to solve the aforementioned
problem, for instance, [4, 5, 6]. Most of those algorithms
have been applied to problems where the relative bandwidth
of the signals is low, such as radar, sonar or mobile commu-
nications. The wideband nature of speech requires a different
approach. Furthermore, the information theoretic approach is
normally reduced to the over-determined case.

Prior works in the field explore different approaches for
speech source enumeration. In [7], a novel method for source
enumeration and location in underdetermined multichannel
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mixtures is presented. The method identifies time-frequency
(T-F) regions belonging to a predominant source to enumer-
ate successfully speech sources in instantaneous mixtures and
anechoic mixtures with small delays. However, it fails when
the delay exceeds one sample as well as in the case of echoic
mixtures. Another approach based on pitch estimation has
been applied, for instance, in [8, 9]. Unfortunately, multi-
pitch estimation is not very accurate due to the proximity and
fluctuations of the pitches of different speech sources, and the
performance degrades rapidly in the presence of noise or ape-
riodicity. Finally, information criteria has also been combined
with multi-pitch estimation, for instance, in [10].

The algorithm proposed in this paper considers a two-
microphone array and assumes a different Direction Of Ar-
rival (DOA) for each of the speech sources. This implies
that each impinging source incurs a different relative delay
at the two microphones. Under the assumption of sparse rep-
resentation of speech in the T-F domain [11], an instantaneous
source delay estimator is computed. The Probability Density
Function (PDF) of the estimates will include peaks associated
to the different source delays. Consequently, the problem of
speech source enumeration is equivalent to count the number
of peaks in this PDF. We will use a linear model to determine
the number of peaks, obtained from the PDF spectral series.
The proposed linear model will reflect the modes of the PDF
of the delays, and will subsequently be used in conjunction
with the MDL criterion to minimize the coding length of the
spectral series. In contrast to other algorithms that apply the
MDL principle to observed data with an associated distribu-
tion, our proposed method seeks to capture the peaks of the
PDF of the delays (much like one seeks spectral peaks of time
series) by analyzing the spectral series of the PDF by consid-
ering its characteristic function [12].

2. DELAY-BASED ENUMERATION ALGORITHM

2.1. Instantaneous delay estimator

Let us consider a mixture of N speech sources recorded by a
microphone array composed of two elements. Without loss of
generality for the echoic case, the anechoic mixing model is
defined by:
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Fig. 1. Histogram-based PDF estimate of δ̂ in the case of an
anechoic mixture of 3 speech sources with source delays of
[-1, 0, 1] samples.

ym(t) =
N∑
j=1

αmj · sj(t−∆mj), m = 1, 2 (1)

where ym(t) are the microphone signals, sj(t) are the original
speech sources, and αmj and ∆mj are the corresponding level
and time differences respectively. The sampled signals in the
discrete-time domain are: ym[n] =

∑N
j=1 αmj · sj(n− δmj),

where δmj are the normalized delays with respect to the sam-
pling period. Considering the first element of the array as a
reference implies α1j = 1 and δ1j = 0, for j = 1, ..., N .
In addition, we rename α2j as αj and δ2j as δj . Taking the
Short-Time Fourier Transform (STFT) of the discrete-time
signals, the mixing model (1) in the T-F domain is

[
Y1(k, l)
Y2(k, l)

]
=
[

1 1 1
α1e
−iωδ1 ... αNe

−iωδN

]S1(k, l)
...

SN (k, l)

 ,
(2)

where k = 1, ...,K is the frequency index, and l = 1, ..., L
is the time index, K is the number of frequency bands and
L is the number of time frames. Considering sources that
fulfill the condition of approximate W-Disjoint Orthogonality
(WDO) introduced in [13], i.e. a non-overlapping representa-
tion of the sources in the T-F domain, the instantaneous delays
may be estimated according to:

δ̂(k, l) = − 1
ω
arg

{
Y2(k, l)
Y1(k, l)

}
. (3)

The fact that the delay changes with the position of the source
together with the assumption of WDO sources, yield the prob-
ability density function (PDF) of the delay estimates whose
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Fig. 2. Histogram-based PDF estimate of δ̂ with phase am-
biguity (blue line) and with the phase unwrapped (red line)
in the case of an anechoic mixture of 3 speech sources with
source delays of [-2, 0, 2] samples.

peaks are associated with each of the sources. Figure 1 shows
a histogram-based PDF estimate of the PDF of δ̂ in the case
of an anechoic mixture of 3 speech sources with a delay of
one sample between them. According to this, we propose to
solve the problem of speech source enumeration counting the
number of modes in the PDF of the delay estimator.

The estimator in (3) can be ambiguous due to the period-
icity of the phase, and it is reliable only if |ωδj | < π, condi-
tion that is guaranteed when ωmaxδjmax < π, which means
that for relative delays between microphones larger than one
sample, the estimated phase will be inaccurate. In order to
overcome this limitation, we unwrap the radian phase of ωδj
by changing the absolute phase jumps greater to or equal to
π to their 2π complement. This operation is performed along
the frequencies of each frame. Once the frequency term is
removed from the unwrapped phase, the delay estimate δ̂j
reflects the true values even when they are larger than one
sample. An illustrative example is shown in Figure 2, where
the delays between the three speech sources of an anechoic
mixture are set to two samples. In the PDF estimate repre-
sented with a blue line, the phase ambiguity has not been re-
solved, and the peaks corresponding to sources with delays of
two samples are barely perceived. However, in the PDF es-
timate represented with a red line, where the phase has been
unwrapped, the three peaks are clearly identifiable.

Finally, the delay estimates that have been estimated from
T-F bins with low energy are not consistent, and they are con-
sequently removed. The energy of a T-F bin is measured with
the geometric mean of the energy of the signals at both mi-
crophones
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E(k, l) = 10log10(|Y1(k, l)| · |Y2(k, l)|), (4)

rejecting delay estimates from T-F points where E(k, l) <
Th, where Th is the threshold. The number of delays rejected
is R.

2.2. Parametric model-based PDF estimation

Let us consider the vector d = [δ1, ..., δQ] containing all the
delay estimates within every T-F bin, where Q = K · L −
R is the length of d. The information regarding the number
of sources is contained in the PDF of the random variable δ,
which is denoted by f(δ). As noted earlier, using the PDF of
the delay estimates and its dual (the characteristic function),
we construct a linear model which we exploit to explore the
coding length of the dual of the PDF as we elaborate next.
With the assumption that f(δ) = 0 if |δ| > π, we proceed to
obtain the spectral sequence φδ[m], defined as:

φδ[m] =
1

2π

∫ π

−π
eiδmf(δ)dδ =

1
2π
E{eiδm}. (5)

Using the sample mean as an estimator of the probabilistic
expectation, the sequence φδ[m] can be estimated with the
next expression:

φ̂δ[m] =
1

2πQ

Q∑
q=1

eiδqm. (6)

A linear predictive model of order P can be computed from
φ̂δ[m],m = 0, ...P , by using the pseudo-inverse solution.
This model is in some sense similar to an AR model. If the
previous assumption (f(δ) = 0 if |δ| > π) is not fulfilled,
the delays should be normalized before applying this method.
Figure 3 shows an example of the aforementioned PDF esti-
mation using the proposed linear model. The blue line rep-
resents the histogram-based PDF estimate of the source de-
lays corresponding to a linear anechoic mixture of 4 speech
sources, introducing delays of [-1, 0, 1, 2] samples between
sources. The red line represents the linear-model estimation
with P = 4, which clearly depicts the four peaks of the PDF.

2.3. Application of MDL for enumeration

The prediction error related to fitting the linear predictive
model to the data is a monotonically decreasing function of
the order model P . However, from a certain value of P , the
linear model fits with sufficient accuracy the true PDF. In
this context, the MDL method suggests choosing the model
that provides the shortest description of our data, then con-
sidering that the order of that model is an estimation of the
number of speech sources in the mixture. Additionally, en-
coding the prediction error is equivalent to encoding the best
representation of the data [12].
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Fig. 3. Histogram-based PDF estimate (blue line) and 4th-
order linear-model estimate (red line) of δ̂ in the case of an
anechoic mixture of 4 speech sources with source delays of
[-1, 0, 1, 2] samples.

In the linear predictive model, the coefficients may be
written as,

φ̂δ[m] =
P∑
p=1

apφ̂δ[m− p] + σ2
ε δK [m], 0 ≤ m ≤ P, (7)

where φ̂δ[m] denotes the estimates with expression (6), σ2
ε is

the variance of the model input random process (ε(n)), and
δK [m] is the Kronecker delta. For m = 0, the value of σ2

ε

may be easily obtained. The model input random process is
assumed to be a Gaussian random process with zero mean and
variance σ2

ε :

f(ε) =
1

σε
√

2π
e
− ε2

2σ2
ε . (8)

We are interested in determining the model order P used to
estimate the PDF. Rissanen in [3] proposed the minimal code
length required to describe the observed data and the free pa-
rameters (model parameters) as a general criterion for model
order determination. The number of bits needed to encode the
data determines the selected model. The choice of an estima-
tor that achieves the shortest total code length via the MDL
criterion is formulated as:

MDL(p) = −log(f(y|a) +
p

2
log(Q), (9)

where y is the vector composed of the data of the spectral
series (related to the delays), and a are the free parameters.
Considering the fact that f(y|a) = f(ε(n)), and introducing
(8) into (9), we obtain after some manipulations:
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Table 1. Source delays for linear mixtures
N delays (samples)
2 [-1, 0]
3 [-1, 0, 1]
4 [-1, 0, 1, -2]
5 [-1, 0, 1, -2, 2]

MDL(p) = Qlog(π) +Qlog(
1
Q
||εp||2) +

p

2
log(Q), (10)

where εp is the prediction error corresponding to the linear
predictive model of order p. Finally, the number of speech
sources is given by

p̂ = min
p∈{1,...,P}

MDL(p) (11)

3. EXPERIMENTS

The algorithm proposed has been tested over 50 different ane-
choic speech mixtures of 2, 3, 4 and 5 sources. The speech
sources are randomly selected from the TIMIT database [15].
The T-F decomposition is performed by a STFT with frames
of 256 samples and 50% overlap, using a hamming window.
The sampling rate is 16 kHz. All signals have been normal-
ized with equal power, and the threshold value to remove low-
energy T-F points is set to 0 dB. The source delays introduced
in the mixtures are included in table 1.

Figure 4 represents the enumeration accuracy rate aver-
aged over 50 mixtures with a varying number of sources. The
enumeration in the case of 2 and 3 sources is almost perfectly
performed, but when the number of sources increases, the er-
ror in the estimation also increases, as it was expected. Nev-
ertheless, the accuracy rate in the 5 sources case is still 80%,
which is a noticeable good value for speech enumeration.
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Fig. 4. Averaged accuracy rate (%) obtained in the estimation
of the number of sources in anechoic speech mixtures of 2, 3,
4 and 5 sources.

4. DISCUSSION

In this paper, we propose a novel method to solve the problem
of speech source enumeration, based on an information theo-
retic coding of the relative delays spectrum series. The num-
ber of sources is equivalent to the order of the optimal linear
model whose selection is achieved by the MDL criterion. The
performance of the proposed algorithm sets a standard in the
enumeration of sources in anechoic speech mixtures, with a
moderate number of sources not to violate the T-F disjoint-
ness of the delays. While not included in this paper for space
reasons, the proposed linear model was successfully applied
to echoic mixtures of sources. In such a case, the width of the
peaks that appear in the PDF is larger, due to reverberation.
Further investigations should be carried out in this direction.
This technique is specially useful in source separation appli-
cations, when the number of sources is an input parameter for
the separation algorithms. The presented results are promis-
ing, but further research is necessary in order to investigate
the robustness in noisy environments, the dependence on the
relative positions of speech sources as well as their energy.
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