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ABSTRACT
We consider the problem of multidimensional seismic data
signal recovery and noise attenuation. These data are mul-
tidimensional signals that can be described via a low-rank
fourth-order tensor in the frequency−space domain. Tensor
completion strategies can be used to recover unrecorded ob-
servations and to improve the signal-to-noise ratio of seismic
data volumes. Tensor completion is posed as an inverse prob-
lem and solved via a convex optimization algorithm where a
misfit function is minimized in conjunction with the nuclear
norm of the tensor. This formulation offers automatic rank
determination. We illustrate the performance of the algorithm
with a synthetic example and with a real data set obtained by
an onshore seismic survey.

Index Terms— seismic data, signal reconstruction, tensor
completion, nuclear norm, rank reduction

1. INTRODUCTION

The seismic experiment starts with laying detectors and
sources on the surface of a region of interest. Active seis-
mic sources (explosives or vibrators) are utilized to propagate
waves in the earth’s interior. Arrays of receivers measure
wave-fields reflected from subsurface geological boundaries
[1, 2]. These data are collected in time series that are usu-
ally called seismograms or seismic traces. The acquired data
depend on two spatial coordinates for the source and two spa-
tial coordinates for the receivers. These coordinates can be
converted to midpoint x, y and offset x, y or offset/azimuth
(Fig. 1) coordinates. Modern seismic acquisition systems
record large data volumes. These volumes are often irreg-
ularly sampled and contain a large number of unrecorded
source-receiver positions. Seismic data processing, however,
requires fully sampled volumes [3, 4]. The latter is solved via
interpolation and reconstruction methods [5]. Reconstruction
methods based on signal processing principles can be catego-
rized into: (a) transform-based methods that use the proper-
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Fig. 1. Definition of coordinates in the seismic experiment.
The star is the source, the triangle is the detector (receiver)
and the circle is the midpoint location. mx,my denote the
midpoint x, y coordinates, hx, hy are the offset x, y coordi-
nates, h is the absolute offset and az is the azimuth angle.

ties of the signal in a suitable domain (e.g. sparsity) [6, 5, 7],
(b) Prediction filtering methods that use the predictability of
the signal in the frequency-space (F-X) or time-space (T-X)
domain [8, 9] and (c) rank-reduction methods that utilize the
low-rank nature of seismic data [10, 11, 12, 13].

The fully sampled 4D spatial volume has a natural repre-
sentation via a low-rank tensor structure [13]. Missing traces
and noise increase the rank of the tensor. In this context, seis-
mic data reconstruction is equivalent to a tensor completion
problem. The completion problem consists of finding a tensor
of minimum rank that obeys data constraints. This is an NP-
hard problem and a common approach is to replace the rank
constraint by the nuclear norm of the tensor [14]. The nuclear
norm plays a role similar to the `1 norm in signal recovery via
compressive sensing techniques [15, 16, 14]. Our reconstruc-
tion algorithm follows the work of Gandy et al. [17] with a
few modifications to make it amenable to reconstructing large
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volumes of data in the frequency-space domain.

2. THEORY

We will denote tensors with bold calligraphic fonts D, matri-
ces with bold capital fonts D and scalars with italic letters a.
The unfoldings of a fourth-order tensor D will be written as
D(i), i = 1, 2, 3, 4. Furthermore, the nuclear norm of a ma-
trix A is ‖A‖∗ =

∑n
i=1 σi, being σi the singular values of

the matrix. The nuclear norm of a tensor will be defined as
the sum of the nuclear norms of its unfoldings. Four unfold-
ings exist for a fourth-order tensor and the “fold” operation
consists of a re-ordering of its elements into a matricial form
[13]. The operations of unfolding and folding require care-
ful manipulation of the indices of the tensor and consist of
mapping a tensor to a matrix and vice versa.

We assume that a fully sampled seismic volume D in the
F-X domain has small n-ranks (rank per unfolding). The cost
function for the interpolation and denoising problem is

minimize J =

4∑
i=1

‖D(i)‖∗ +
λ

2
‖T D −Dobs‖2F , (1)

where Dobs are the observations, T is the sampling operator
with the same size as D and λ is a trade-off parameter. The
minimization of the n-ranks of a tensor is closely related to
the truncated Higher-Order singular value decomposition of a
tensor [18]. Kreimer and Sacchi [13] proposed to adopt the
HOSVD to reconstruct and denoise seismic volumes. In ten-
sor completion via the HOSVD, the user needs to provide the
rank of the tensor. An advantage of a nuclear norm formula-
tion, on the other hand, is that the final rank of the tensor is
revealed by the optimization algorithm.

The minimization of the objective function in (1) is car-
ried out using the alternating direction method of multipliers
(ADMM) [17]. This method solves the problem of minimiz-
ing the sum of two convex functions subject to constraints
[19]. The minimization of the cost function is carried out
one variable at a time, followed by an update of the Lagrange
multipliers. In our particular problem (1), we require new
variables denoted Y

(i)
i = D(i), i = 1, 2, 3, 4 (a tensor Yi

per unfolding D(i)). We will also have four Lagrange multi-
pliers Wi, i = 1, 2, 3, 4.

Using the new split variables Yi,Wi and identifying the
two convex functions to use ADMM [17, 20], the augmented
objective function becomes

J(D,Yi,Wi) =
λ

2
‖T D −Dobs‖2F +

4∑
i=1

(
‖Y(i)

i ‖∗

− <Wi,D −Yi > +
β

2
‖D −Yi‖2F

)
. (2)

The ADMM method minimizes J first with respect to D, as-
suming all other variables constant. Second, it minimizes J

with respect to Yi for all i while keeping all other variables
fixed. The last step is the update of the multipliers Wi.

The minimum of J with respect to Yi is the set of the in-
dividual minima for each i. Considering the variables D,Wi

fixed and using the theorem 2.1 from Cai et al. [21], the min-
imum for Yi is

Yi min = fold
(

shrink
(

D(i) − 1

β
W

(i)
i ,

1

β

))
, (3)

This expression applies for all four variables Yi, i = 1, 2, 3, 4.
The shrinkage operator on a matrix A is a soft thresh-
olding operator defined as shrink(A, α) = UΣ̃VH, where
the singular value decomposition of A = UΣVH and
Σ̃ = max {Σ− αI, 0}.

To find the minimum with respect to D, we consider the
other two variables Yi,Wi fixed. The minimum of D is

Dmin
∣∣
ijkl

= (4)

(λ+ 4β)−1

[
4∑
i=1

Wi +

4∑
i=1

βYi + λDobs

]
if ijkl ∈ Ω

(4β)−1

[
4∑
i=1

Wi +

4∑
i=1

βYi

]
if ijkl /∈ Ω

where Ω denotes the set of observations. In our algorithm
we modified the original method [17] and kept λ, β constant
throughout the iterations. These parameters where found us-
ing synthetic simulations under different noise and levels of
decimation (shown in the following section). Notice that con-
trary to the implementation in Gandy et al. [17], we apply
the ADMM algorithm for each frequency. The convergence
proof of this algorithm for constant λ, β can be found in the
previously mentioned paper.

Finally, the algorithm reduces to:

repeat until maximum number of iterations kmax
Dk+1 as in (4)

for i = 1, 2, 3, 4

Yk+1
i = fold

(
shrink

(
D(i) k+1 − 1

β
W

(i) k
i ,

1

β

))
Wk+1

i = Wk
i − β

(
Dk+1 −Yk+1

i

)
end

output is Dkmax

3. SYNTHETIC EXAMPLES

Our synthetic examples are based on a 3D model with two
dipping planes. The size of the tensor per frequency is
12× 16× 12× 16 in the mx − my − hx − hy domain.
The volume has 512 time samples with a time sampling rate
of 2 ms. Therefore, the data has 512 frequencies samples of
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Fig. 2. Quality of the reconstructionQ versus parameter λ for
β = 1, 15, 30.

which less than half are used for tensor completion. Addition-
ally, we randomly remove 50% of the traces and add random
Gaussian noise to produce a volume with SNR = 1, where
SNR =

σ2
data

σ2
noise

. This synthetic example enables us to select the
parameters λ, β that give the optimal results for the presented
algorithm and to analyze its behaviour. The quality of the
reconstruction in decibel units is Q = 10 log ‖Dtrue‖2

‖Dout−Dtrue‖2 ,
where Dtrue is the complete and noise-free volume, and Dout

is the reconstructed and noise-attenuated volume. We use
a maximum of 200 iterations for each frequency. We must
stress that we are analyzing the global behaviour of the pa-
rameters λ, β, .i.e. for all frequencies.

Fig. 2 shows the quality Q versus the trade-off parameter
λ for different values of β. We notice that Q deteriorates for
the smallest value of β and that a few combinations of λ, β
can give similar values of Q. We did not try to use larger
values of β because in our tests we observed that increasing
this parameter deteriorates the reconstruction. From this par-
ticular test, we conclude that larger values of β and smaller
values of λ give the best reconstruction. The combination
λ = 2.5, β = 15 gives the largest Q and we will use these
values throughout the rest of our calculations. An alternative
to our choice of β can be found in Boyd et al. [20, p. 20].

The algorithm presented in this paper provides automatic
rank determination. In other words, it is not necessary to
choose a rank, as in the algorithm proposed by Kreimer and
Sacchi [13]. Fig. 3 displays the distribution of singular val-
ues for one frequency in the reconstruction, averaged over all
unfoldings. We confirm that the reconstructed volume has a
similar singular value distribution to the original volume.

With the optimal values of λ, β that were found via the
simulations, we reconstruct a 5D synthetic volume of size
512 × 19 × 20 × 19 × 20. We remove 40% of the traces
randomly and add random Gaussian noise with a SNR = 1.
Fig. 4 contains a small portion of the volume for two spatial
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Fig. 3. Normalized singular value distribution for one fre-
quency. Each curve is an average of the singular values for
the four unfoldings of the 4D tensor.

coordinates fixed. The quality of the reconstruction for this
case is Q = 20 dB. It is important to notice that the wave-
forms contain significant curvature, which is a problem for
other algorithms, such as Fourier based reconstruction meth-
ods that use sparsity in the wave-number domain [5, 22]. Ev-
idently, this is not a problem for our algorithm (Fig. 4).

We perform tests to quantify the difference between the
HOSVD-based reconstruction algorithm [13] and the pre-
sented ADMM-based technique. We apply both methods
on the same synthetic example used in Fig. 2 with samples
randomly removed from 10% to 90%. We use a maximum
of 200 iterations per frequency for the ADMM-based tensor
completion and 20 iterations per frequency for the HOSVD-
based tensor completion. Fig. 5 contains the results from
the simulation. We observe that the ADMM-based method
gives better reconstruction results than HOSVD for different
levels of decimation at the cost of larger running times. The
average running time for ADMM is 45 min for the examples
of Fig. 5 on a single processor Intel Xeon(R) running at 3.07
Ghz using MATLAB, while HOSVD’s average running time
is 2 min.

4. FIELD DATA EXAMPLE

Our real data example is from a land data survey from Al-
berta, Canada. The grid size utilized is 16×16×8×36 in the
midpoint x, y-offset-azimuth domain. The size of the cells are
10 m×10 m for midpoint x, y directions, 100 m for offset and
10◦ for azimuth. The offset range is 50 − 750 m. The total
number of grid points are 16× 16× 8× 36 = 73728 whereas
the total number of traces are 16306. Therefore, roughly 22%
of the grid is populated and our aim is to recover the remain-
ing 78% of the traces. The frequencies considered in the al-
gorithm range from 0.1 − 100 Hz, with 1 ms sampling rate.
As mentioned in the previous section, λ = 2.5, β = 15 and
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Fig. 4. Small portion of the data with 40% randomly deci-
mated traces in the whole 5D volume and random Gaussian
noise with a SNR = 1. (a) Portion of the 5D desired vol-
ume. (b) Decimated and noisy data. This is the input to the
algorithm. (c) Reconstructed data.
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Fig. 5. Quality of the reconstruction versus sampling ratio for
a synthetic volume with two different methods. As reference,
the largest error bar is equal to 0.1.
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Fig. 6. Subset of the whole volume is displayed in the figure,
for two fixed spatial coordinates. a) Input to the algorithm. b)
Reconstructed data.

the maximum number of iterations is 200. The running time
is 1 h 25 min. Fig. 6 presents a portion of the data for two
fixed coordinates and exhibits a satisfactory performance in
the reconstruction and noise attenuation of the traces. Natu-
rally, we cannot use the same measure of quality Q as we did
for the synthetic data. Although not shown in this article, we
can compare the seismic stacks [1] (sets of average of traces
falling on the same midpoint bin) before and after to assess
the quality of the reconstruction.

5. CONCLUSIONS

This paper focuses on the inverse problem of seismic data re-
construction and denoising. We used the alternating direction
method of multipliers one frequency at a time to minimize
the cost function of the problem. Unlike other multidimen-
sional reconstruction techniques, the proposed method is ten-
sor completion based and uses nuclear norm minimization of
the 4D tensor in the F-X domain. This formulation offers an
automatic rank determination of the reconstructed data, by-
passing the selection of the rank by the user. Simple simula-
tions allowed us to tune the trade-off parameters. This leads
to a high-quality reconstruction even in the presence of seis-
mic events with strong curvature and low SNR. While the as-
sumptions are similar to those of HOSVD-based reconstruc-
tion, we observed that this method leads to slightly better re-
sults. A real case scenario with a land data example further
demonstrates the performance of the algorithm. Although the
running times for the proposed algorithm are longer than for
HOSVD, ADMM-based reconstruction presents a formal for-
mulation to the rank-reduction based interpolation problem.
This formulation contains similarities to current research be-
ing done in compressive sensing.
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