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ABSTRACT

Reconstructing a diffusion field from spatiotemporal measurements
is an important problem in engineering and physics with applica-
tions in temperature flow, pollution dispersion, and disease epidemic
dynamics. In such applications, sensor networks are used as spa-
tiotemporal sampling devices and a relatively large number of spa-
tiotemporal measurements may be required for accurate source field
reconstruction. Consequently, due to limitations on the number of
nodes in the sensor networks as well as hardware limitations of each
sensor, situations may arise where the available spatiotemporal sam-
pling density does not allow for recovery of field details. In this pa-
per, the above limitation is resolved by means of using compressed
sensing (CS). We propose to exploit the intrinsic property of diffu-
sive fields as side information to improve the reconstruction results
of classic CS which we call diffusive compressed sensing (DCS).
Experimental results demonstrate the effectiveness and usefulness
of the proposed method in substantial data savings while producing
estimates of higher accuracy, as compared to classic CS-base esti-
mates.

Index Terms— Diffusion field, spatiotemporal sampling, sensor
networks, compressed sensing

1. INTRODUCTION

Many natural phenomenon in physics are governed by diffusion
equation, including temperature flow, pollution dispersion, and dis-
ease epidemic dynamics. In such applications, sensor networks
are used as spatiotemporal sampling devices to sample and recon-
struct diffusion fields [1]. In contrast to general multidimensional
signals, the effect of temporal and spatial down-sampling are not
homogeneous. Generally, it is more expensive to increase the spatial
sampling density as more sensors are needed in the network, while
temporal sampling density is only limited by each sensor hard-
ware [2]. An efficient sampling scheme will have an impact on real
world applications such as pollution detection [3] and plume source
detection [4]. In this paper, we try to provide a sampling scheme for
such applications in the literature.

Inverse problems of the diffusive fields are generally ill-posed
and require a relatively large number of measurements. Typically,
such dense data sets are required to allow for accurate reconstruc-
tion of fine field details. In such cases, improving the acquisition
requirements of the hardware in use through reducing the sampling
density would unavoidably produce aliasing artifacts. Fortunately,
recent advances in sampling theory offer a means - known as com-
pressed sensing (CS) [5,6] - to overcome this limitation, while allow-
ing for accurate reconstruction of digital sources from sub-Nyquist
sampling rates.

In the current note, we consider spatiotemporal sampling and
reconstruction of a 1-D diffusive field u(x, t) governed by the heat

equation:

∂u(x, t)

∂t
= γ

∂2u(x, t)

∂x2
, t ≥ 0,

u(x, 0) = f(x)

(1)

where γ is the diffusion coefficient, x denotes spatial domain vari-
able, t denotes time domain variable, and f(x) represents the initial
field value.

If the initial field value is available, we can solve (1) for u(x, t).
However, in many situations, initial field value is not available [2],
and it is not possible to derive u(x, t) based on solely the partial
differential equation constraint, as u(x, t) varies dramatically with
different initial condition. In these situations, we can measure spa-
tiotemporal samples and use them to reconstruct u(x, t).

In this paper, we introduce a novel method for reconstruction
of diffusion fields governed by heat equation, from the sub-critical
(incomplete) measurements of their spatiotemporal samples. Here,
we take advantage of CS for efficient field sampling. The classic CS
framework does not incorporate arbitrary a priori information on the
interrogated signals. In particular, at the case at hand, it seems to be
natural to reconstruct the source field using the fact that it satisfies
the partial differential equation in (1). Specifically, we propose new
CS formulation that incorporates the side information derived from
(1) to improve the reconstruction quality of the standard CS [5, 6],
while resulting in substantial reduction in the required sampling den-
sity. We show through theory that our CS formulation can reduce
the dimension of the feasible region in CS reconstruction, resulting
in better reconstruction quality. Experimental results are provided to
further demonstrate the effectiveness of the proposed method.

2. PROPOSED SAMPLING SCHEME

2.1. Classic Compressive Sensing

Compressed Sensing (CS) is a technique to reconstruct digital signal
from sub-Nyquist sampling rates [5,6]. Consider a digital signal x ∈
Rn which can be represented sparsely in a dictionary domain W ∈
Rn×n, x = W c. Let c is k-sparse (‖c‖0 = k), a classic result of
CS states that this signal can be recovered from linear measurements
y ∈ Rm with a dimension as low as m = O(K log(n/K)) [5, 6],
which are assumed to be acquired according to

y = Ψx + n, (2)

where Ψ ∈ Rm×n is a full-rank sensing matrix (with n > m) and
n denotes measurement noise. Due to overcompleteness of Ψ, (2) is
clearly ill-posed. However, classic theory of CS states that if Φ =
ΨW obeys the restricted isometry property (RIP) of order s with
parameter δs [5, 6]

∀c ∈ Rn, ‖c‖0 = s→ 1− δs ≤
‖Φc‖22
‖c‖22

≤ 1 + δs, (3)
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then (2) has a unique solution and c can be obtained by solving:

c = arg min
c′
‖c′‖1 s.t. ‖Φc′ − y‖22 ≤ ε, (4)

where ε > 0 is a parameter which controls the noise power. Several
algorithms, using the convex analysis and optimization, have been
developed in the literature for solving (4). Note that the feasible re-
gion of the problem (4) is SΦ,y = {c|Φc = y}, and is automorphic
to null-space of Φ. In other words we search null(Φ) for finding the
optimal solution. As the dimension of null(Φ) decreases (e.g., num-
ber of measurements m increases), ill-posedness of the problem (2)
becomes less severe and the search for the optimal solution would
become easier. Instead of increasing the number of measurements,
we show that in this paper how to incorporate the underlying prop-
erty of a diffusive field to reduce the dimension of feasible space.

Note that RIP is not an essential concept for derivation of CS
results. A more recent approach for CS provides similar results by
studying properties of the null-space of the sensing matrix [7]. A
subspace C ⊂ Rn with dimension dim(C) = n−m is said to have
spherical section property (SSP) with distortion ∆ if:

∀c 6= 0 ∈ C → ‖c‖1‖c‖2
≥
√
m

∆
. (5)

If null(Φ) has ∆-spherical section property then, if the source sparse
representation c is sparse enough (‖c‖0 ≤ m

2∆
≤ n

2
), then the stated

classic results of CS on uniqueness of solution of (2) and solvability
by algorithm (4) holds [7].

2.2. Diffusive Compressive Sensing

Let u(x, t) represents an original diffusive field which satisfies (1).
For the sake of convenience, u(x, t) is assumed to be defined over
a finite-dimensional, uniform, rectangular lattice in R2. The dis-
cretized version of this field can be represented in a matrix X ∈
RN×M . We assume that this field is sampled via a sensor net-
work with Ns nodes which are deployed uniformly in the space and
each sensor collects Nt uniform samples in time. Clearly, we have
m = NtNs measurements which can be represented in a matrix
Y ∈ RNs×Nt with m = NsNt ≤ NM = n. X and Y can be con-
catenated into two column vectors x and y by means of lexicographic
ordering, respectively. It is assumed that the observed version y of
the vector x is obtained as y = Ψx, where Ψ is a subsampling ma-
trix which accounts for the effect of uniform downsampling. It is
also assumed that x admits sparse representations with respect to a
linear transformation W , x = W c. Finally, in order to apply CS to
the problem, it is assumed that null(Φ) satisfies SSP by choosing Ψ
and W properly.

Under the above conditions, CS-based reconstruction of the rep-
resentation coefficients c can be performed according to

c∗ = arg min
c′

{
1

2
‖Φc′ − y‖22 + λ‖c′‖1

}
. (6)

This formulation is equivalent to (4) and hence CS solver algorithms
can be used to handle this optimization problem.

Our proposed diffusive CS (DCS) algorithm extends the CS ap-
proach by using the fact that u(·, ·) satisfies (1). Let Dx ∈ Rn×n
and Dt ∈ Rn×n denote the matrices of discrete partial differences
in the spatial and time directions, respectively. Then, the discretized
version of the constraint (1) suggests that

Dtx = γDxDxx→ (Dt − γDxDx)W c = 0. (7)

Let B := (Dt − γDxDx)W , Φ′ =

[
Φ
B

]
, y′ =

[
y
0

]
, and n′ =

[
n
0

]
,

then:
y′ = Φ′c + n′. (8)

Algorithm 1: Diffusive Compressive Sampling

1. Data: y, δ, γ and λ > 0

2. Initialization: For a given transform matrix W and
matrices/operators Ψ, Dx, Dt, preset the procedures of
multiplication by A = ΨW , AT , B and BT .

3. Diffusisive field recovery: Starting with an arbitrary c(0) and
p(0) = 0, iterate (11) until convergence to result in an optimal c∗.
a. Use CS solver algorithm of [8] for solving the optimization
problem in (11).
b. Update the vector of Bregman variables p(t).

4. Source recovery: Use the estimated (full) sparse representation c∗

to recover the values of x = Wc∗.

Note that the problem (8) is an instance of the problem (2) and
can be studied in CS framework. Here, the constraintBc = 0 in (8),
can be viewed as extra noiseless measurements of the sparse source.
Furthermore, we have

null(Φ′) = null(Φ) ∩ null(B)→ null(Φ′) ⊂ null(Φ), (9)

and since null(Φ) satisfies SSP with parameters m and ∆, then
null(Φ′) as a subset would also satisfy SSP with the same param-
eters or equivalently from (5) m + n and ∆′ = ∆(1 + n/m).
Consequently (8) share the same unique solution with (1). This re-
sult ensures that adding the additional constraint would not violate
uniqueness of the solution to (1).

Equivalently, the DCS approach recovers the optimal c∗ as a
solution to the following constrained problem

c∗ = arg min
c′

{
1

2
‖Φc′ − y‖22 + λ‖c′‖1

}
, (10)

s.t. Bc′ = 0.

A solution to (10) lays in intersection of null(B) and SΦ,y. Thus
the feasible region of (10) is a subset of the feasible region of (4)
and clearly with smaller dimension. Intuitively, one can expect that
solving (10) will result in a more accurate approximation for c as
compared to (6) which motivated us to consider solving (10) instead
of (6).

A solution to (10) can be found by means of the Bregman algo-
rithm [9], in which case c∗ is computed iteratively as given by

c(t+1) = arg minc′

{
1
2
‖Φc′ − b‖22+

+λ‖c′‖1 + δ
2
‖Bc′ + p(t)‖22

}
p(t+1) = p(t) + δBc(t+1),

(11)

We used the FISTA algorithm [8] to solve the c-update step, due to
the simplicity of its implementation. Given the optimal solution c∗,
the dense source signal can be recovered as x = Wc. Algorithm 1
summarizes all the DCS algorithmic steps.
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Table 1. PSNR comparisons of diffusion field recovery results for noise level of 10 dB
ds 1 2 2 1 4 4 1 8 8 1 16 16
dt 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50% 50% 25% 25% 25% 6.25% 12.5% 12.5% 1.56% 6.25% 6.25% 0.39%

PSNR comparison (in dB) for u1(·, ·)
CS 12.50 13.36 11.67 3.13 3.21 2.25 0.32 0.31 -0.01 -0.23 -0.24 -0.03
DCS 19.33 18.79 18.39 18.31 17.23 16.64 15.46 16.64 14.85 13.79 15.57 9.34

PSNR comparison (in dB) for u2(·, ·)
CS 12.60 12.81 11.47 3.09 3.13 2.18 0.31 0.31 -0.01 -0.24 -0.23 -0.02
DCS 22.44 23.48 22.17 20.72 22.64 21.09 18.76 21.401 16.65 16.73 17.67 9.31

PSNR comparison (in dB) for u3(·, ·)
CS 12.43 12.93 11.12 3.01 3.01 2.15 0.31 0.32 0.01 -0.24 -0.24 -0.03
DCS 20.98 21.69 20.47 19.43 20.94 18.65 17.78 19.64 16.16 16.04 16.70 9.64

3. EXPERIMENAL RESULTS

The proposed algorithm is tested over three different solutions of
the heat equation (1) as the source field, denoted by u1(·, ·), u2(·, ·),
and u3(·, ·) for different boundary and initial conditions. The fields
are assumed to be defined over the lattice [0, 2π] × [0, 1] ⊂ R2,
uniformly discretized with M = N = 128 → n = 16384. We
set the boundary conditions to be non-homogeneous for u1(·, ·) and
u2(·, ·), and homogenous Neumann condition for u3(·, ·). The initial
conditions are chosen to be f1(x) = Π(0, π), f2(x) = δ(x − π)
(local point source), and f3(x) = x for each case, respectively. The
subsampling matrix Ψ is assumed to downsample the source field
uniformly with downsampling dt and ds factor in time and spatial
domains, respectively:

Y (i, j) = X(dsi, dtj), 1 ≤ i ≤ Ns, 1 ≤ j ≤ Nt (12)

For sparse representation basis, an over complete W was derived
from a four-level orthogonal wavelet transform using the nearly sym-
metric wavelets of Daubechies with five vanishing moments and
δ = 0.5, λ = 0.001, γ = 1.

For the purpose of comparison, we have compared our algo-
rithm with classic CS approach in terms of reconstruction SNR. The
results of this comparison are summarized in Table 1 and Table 2
for different levels of noise and different percentage of the samples
(PoS) in each table. In each table results for downsamling factors
of 2, 4, 8, 16 in different directions are provided. As expected, for
all cases one can see that DCS results in substantially high values of
output SNR as compared to classic CS, which implies a higher accu-
racy of field reconstruction. A close look on both tables reveals in-
teresting results of the proposed algorithm. Note if we downsample
a source field in one direction with the same downsampling factor,
regardless of the direction, the resulting number of measurements
are the same. Now consider those columns of tables with the same
downsampling factor but different direction, e.g. third and fourth
column, while for the case of classic CS the reconstruction quality
differs in both tables, the quality of reconstruction for the case of
DCS is similar. This can be explained through different correlations
of the samples in different dimensions. From (7) one concludes that
a field sampleX(i, j) is correlated withX(i+1, j) andX(i+2, j)
in spatial domain while it is only correlated with X(i, j+ 1) in time
domain. In other words dependency of the samples are not the same
in time and spatial domain and it is harder to reconstruct the field
when we lack time samples which is reflected in CS reconstruction
results. In contrast, when we apply DCS these dependencies are
considered as an additional data and thus the reconstruction quality

is similar and is independent of downsampling direction. Gener-
ally, when we encounter insufficient spatial samples, oversampling
in time domain is used to compensate [2]. Our result indicates that
DCS can recover the source with less time samples which can be
translated as energy saving in sensor nodes.

Another important result is on robustness of the proposed
scheme towards insufficient samples. Consider a row in Table 1
or Table 2, it can be seen that as the downsampling factor increases
the reconstruction quality for classic CS degrades severely and for
downsampling factors of 8 and 16 almost no information is recov-
ered. While for the case of DCS, the algorithm is robust and even
when we downsample a field with factor of 16 in both directions,
using almost 0.4% of the samples, it still can recover some informa-
tion. For better comparison Fig. 2 depicts performances of CS and
DCS algorithm for a range of downsampling factors with dt = 1,
SNR = 40dB, and u2(·, ·). It can be seen that for the case of
CS, the reconstruction quality degrades sharply for downsampling
factors greater than 4 while DCS is robust towards downsampling.
This can be explained by the constraint exploited by DCS. The
constraint Bc′ = 0 in (10), can be considered as extra measure-
ments of the sparse source which can compensate for insufficient
real measurements. This can explain while the difference between
CS and DCS is negligible for small downsampling factors, why
it becomes considerable as the scaling factor increases. When we
have enough information to recover the source then constraint (7)
does not provide considerable information but when we lack enough
information, this constraint becomes more important.

A comparison between the result of Table 1 and Table 2 also
reveals that although reconstruction quality degrades as the additive
noise power of measurements increases but DCS seems more ro-
bust towards the noise. To investigate the robustness of the proposed
algorithms towards measurement noises, its performances has been
compared for a range of SNR values (as a measure for noise power)
with classic CS for the case dt = 2, ds = 2 and u3(·, ·). The re-
sults of this comparison are summarized in Fig. 3. As expected in
both cases the reconstruction quality degrades by decreasing SNR,
but this dependency is more critical for classic CS, which results in
steeper graph in Fig. 3. Again, this can be explained by the con-
straint exploited by DCS which restricts the feasibility region for an
optimal solution. Moreover, as explained the constraint Bc′ = 0 in
(10), can be considered as extra measurements of the sparse source.
These measurements are noise free and consequently one concludes
that if we use this constraint, the reconstruction algorithm will be-
come more robust towards the noise power. Intuitively one can say
that since n ∈ Rm, n′ ∈ Rn+m, and ‖n′‖2 = ‖n‖2, the noise power
has been multiplied by m

n+m
< 1.This fact represents another ad-
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Table 2. PSNR comparisons of diffusion field recovery results for noise level of 40 dB
ds 1 2 2 1 4 4 1 8 8 1 16 16
dt 2 1 2 4 1 4 8 1 8 16 1 16
PoS 50% 50% 25% 25% 25% 6.25% 12.5% 12.5% 1.56% 6.25% 6.25% 0.39%

PSNR comparison (in dB) for u1(·, ·)
CS 12.86 13.49 11.83 3.11 3.25 2.24 0.31 0.32 -0.00 -0.24 -0.23 -0.02
DCS 18.32 19.96 18.77 17.40 18.77 16.98 15.51 17.43 15.19 13.87 15.91 9.52

PSNR comparison (in dB) for u2(·, ·)
CS 12.74 13.12 11.32 3.07 3.13 2.16 0.33 0.33 -0.01 -0.24 -0.24 -0.03
DCS 22.75 23.88 22.35 20.84 22.95 20.34 18.87 21.57 16.95 16.81 17.63 9.36

PSNR comparison (in dB) for u3(·, ·)
CS 12.27 13.09 11.08 3.05 3.08 2.14 0.30 0.31 0.01 -0.24 -0.24 -0.02
DCS 21.27 22.34 20.82 19.60 21.26 18.89 17.91 19.85 16.45 16.24 16.72 9.55

Fig. 1. SNR of field reconstruction as a function of spatial downsam-
pling factor. Here, the solid and dashed lines correspond to classic
CS and DCS, respectively, and dt = 1.

vantage of incorporating the diffusive field constraints in the process
of field recovery.

4. CONCLUSION

In this paper, the problem of diffusive field reconstruction using sub-
Nyquist sampling rates is studied. A CS-based approach has been
proposed to simplify the measuring devices and improve the device
resolution. The proposed method applies CS for field reconstruction
subject to an additional constraint, which stems from the intrinsic
property of a diffusive field. Experiments confirm the source esti-
mates by DCS have better quality as compared to the case of classic
CS and comparable as to the case of dense sampling. One direction
for future work is applying the algorithm in designing the sampling
devices for diffusive field reconstruction. Applying the algorithm in
the sampling device structure will improve the capability of recon-
structing diffusive field details in the presence of low density mea-
surements. Another direction is to understand the performance under
partial model knowledge.
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