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ABSTRACT
For wireless sensor networks, many decentralized algorithms have
been developed to address the problem of locating a source that emits
acoustic or electromagnetic waves based on received signal strength.
Among the motivations for decentralized algorithms is that they re-
duce the number of transmissions between sensors, thereby increas-
ing sensor battery life. Whereas most such algorithms are designed
for arbitrary sensor placements, such as random placements, this pa-
per focuses on applications that permit a choice of sensor placement.
In particular, to make communications costs small, it is proposed to
place sensors uniformly along evenly spaced rows and columns, i.e.,
a Manhattan grid. For such a placement, the Midpoint Algorithm
is proposed, which is a simple noniterative decentralized algorithm.
The results of this paper show that Manhattan grid networks of-
fer improved accuracy vs. energy tradeoff over randomly distributed
networks. Results also show the proposed Midpoint Algorithm of-
fers further energy savings over the recent POCS algorithm.

Index Terms— Wireless sensor networks.

1. INTRODUCTION

An important application in the area of wireless sensor networks is
the problem of source localization, where sensor measurements are
used to estimate the position of a source emitting electromagnetic
or acoustic waves [1]. One such measurement is received signal
strength (RSS), where noisy measurements of received signal power
are made at each sensor. Many previous RSS-based localization al-
gorithms for a single source are designed for arbitrary sensor place-
ments [2, 3, 4, 5]. While it is true that some applications may not
allow for a choice in sensor placement, those that do have certain
advantages. For such, we propose placing sensors uniformly along
rows and columns spaced k sensors apart, as illustrated in Figure 1.
As we will argue, this Manhattan grid sensor layout has the advan-
tage that communication requires less power than a randomly dis-
tributed network or uniform lattice, thereby increasing battery life.
Previously, Manhattan grid sampling has been used in bilevel image
coding and reconstruction [6, 7, 8], as well as grayscale image recon-
struction [9, 10]. A sampling theorem for Manhattan grids has also
been derived [11]. The problem of RSS source localization is sim-
ilar to these image processing problems in that we are given noisy
samples of an RSS “image” on the Manhattan grid and we would
like to reconstruct properties of that image (in this case, the source
location).

We begin by describing geometric properties of a Manhattan
grid. An infinite Manhattan grid is described by two parameters:
its intersensor spacing λ and the Manhattan grid parameter k. This
grid partitions space into kλ × kλ blocks. Associating 2k − 1 sen-
sors with each block, we see that the sensor density is 2k−1

(kλ)2
. Now
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Fig. 1. n = 500 sensors placed along a Manhattan Grid (k = 10) in a
100m × 100m square; each × denotes one sensor. A source is located at
θ = [50, 50]. Contours of constant power under no noise are shown in dB.

suppose we would like to construct a finite Manhattan grid with n
sensors and parameter k over a w × w square region. Since for
some values of k it is impossible to choose λ so that a Manhattan
grid with n sensors and parameters (k, λ) exactly covers the w × w
square, we choose sensor spacing λ = w

√
(2k − 1)/(nk2), and

generate a finite Manhattan grid with B =
(
b w
kλ
c
)2 grid blocks and

(2k − 1)B + 2k
√
B − 1 ≈ n sensors.

We now describe the energy cost advantages of a Manhattan grid
sensor network, and later we propose the Midpoint Algorithm for
further reductions in energy. Mimicking the analysis in [3, 12], the
total energy needed for any source localization algorithm is

E = b× h× e (1)

where b is the number of total sensor transmissions, h is the num-
ber of hops through the network per transmission, and e is the en-
ergy required to transmit a single hop. As we will now discuss, e
is greatly affected by the choice of sensor placement, in particular
the intersensor spacings, and since for typical algorithms h and b
are not nearly as affected, a first-order approach for comparing the
energy performance of various sensor layouts is to estimate e. To
do so, note that the average power emitted by a sensor at distance d
decays as O(d−α), where α is between 2 and 4. Thus, the energy
required for one communication hop between neighboring sensors is
e = O(dα). If we place n sensors randomly over a w × w square,
the average distance between neighboring sensors is w/

√
n and e =

O(n−α/2). However, when the sensors are placed with spacing λ
along a Manhattan grid of parameter k and density n/w2, the dis-
tance between neighboring sensors is λ = w

√
(2k − 1)/nk2, and

e = O(k−α/2n−α/2), thus reducing energy by a factor O(kα/2)
over a random placement.
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We formulate the problem in Section 2. In Section 3, the decen-
tralized Midpoint Algorithm is proposed to solve the source local-
ization problem on a Manhattan grid. The accuracy vs. energy per-
formance of the Midpoint Algorithm is discussed in Section 4 and
compared to the recent decentralized POCS algorithm [4]. Finally,
we discuss avenues for future research in Section 5.

2. PROBLEM STATEMENT

Suppose n sensors are distributed over a w × w square along a
Manhattan grid. Along each row/column of the Manhattan grid,
m = w/λ sensors are spaced λ = w

√
(2k − 1)/nk2 apart. For

some positive integer k, each row/column of the grid is spaced kλ
apart. These four quantities n,m, k, λ are dependent, so we fix the
number of sensors n and vary the Manhattan grid parameter k.

Let xi = [xi(1), xi(2)] denote the location of the ith sensor.
A source with known intensity A is positioned at unknown location
θ = [θ(1), θ(2)] within thew×w square. The source emits a signal
whose strength decays with distance to the power β, where β is typ-
ically in the range of 2 to 4. For each i, the ith sensor makes a noisy
measurement yi of the received signal strength (RSS), modeled as

yi =
A

‖xi − θ‖β
+ vi. (2)

where ‖ · ‖ is the Euclidean norm and the vi’s are i.i.d. zero-mean
Gaussian noise with known variance σ2. [4] contains more infor-
mation about the theory behind this model, and an application using
real-world data can be found in [13]. Extensions to noise models
involving fading [1] are possible.

Depending upon the sensor deployment geometry and localiza-
tion algorithm, groups of neighboring sensors must communicate
with each other and decide if the source is within their vicinity. If
so, they must also estimate its location. Hence, our proposed algo-
rithm must operate in a decentralized manner. A decentralized algo-
rithm’s performance is determined by (a) the probability that sensors
locally close to the source will actually detect the source, (b) the false
alarm probability, i.e., the probability that a sensor located far from
the source will mistakenly declare a detection, and (c) the average
squared error between the true location θ and its estimate θ̂ in cases
of a correct detection. We also consider the communication cost (1).

In [3], Rabbat and Nowak proposed a decentralized source lo-
calization algorithm based on incremental subgradient optimization,
but they did not specify how to detect the presence of a source before
making an estimate. In [4], Blatt and Hero proposed a decentralized
source localization method based on projections onto convex sets
(POCS). This algorithm required choosing a threshold γ such that
all sensors with received RSS greater than γ were considered active;
thus, the detection probability was determined by this threshold. The
active sensors collaborated to produce an estimate of θ based on their
RSS measurements. One improvement of POCS over Rabbat and
Nowak’s method was a smaller energy cost (1); in particular, POCS
reduced the number of sensor transmissions b required for their al-
gorithm to converge. Both iterative algorithms can be applied to a
Manhattan grid sensor network to solve the problem of source local-
ization. However, we will propose a non-iterative algorithm that ex-
ploits the Manhattan grid geometry to reduce communication costs
at the price of higher estimation error.

Finally, in [5], Rabbat and Nowak consider various estimators to
solve the problem of source localization, including

θ̂ =

∑n
i=1 xi1{yi>γ}∑n
i=1 1{yi>γ}

(3)

where γ is a threshold and 1{yi>γ} is the indicator function. This
estimator is simply an average of active sensor locations, and we
modify it for a Manhattan grid in the next section.

3. MIDPOINT ALGORITHM

In order to take advantage of the Manhattan grid structure to reduce
the communication cost of forming an estimate of θ, the Midpoint
Algorithm differs from the (3) in two principal ways. First, instead
of jointly estimating θ(1) and θ(2) from all active sensors, the Mid-
point Algorithm estimates θ(1) from active sensors in Manhattan
grid rows, and θ(2) from active sensors in grid columns. Second, it
replaces the average location in (3) with the midpoint between the
active sensors in each grid row (grid column) that are farthest apart.

For concreteness, denote the set of sensors in the jth row by

Hj = {i : xi(1) = `λ, xi(2) = jkλ, ` = 0, · · · ,m− 1}.

We say that sensor i inHj is active if yi > γ, and we say that the jth
row Hj is active if it contains an active sensor. Whereas one could
estimate θ(1) from an active row as in (3):

θ̂j(1) =

∑
i∈Hj

xi(1) · 1{yi>γ}∑
i∈Hj

1{yi>γ}
,

the Midpoint Algorithm estimates θ(1) as

θ̂j(1) =
xa(1) + xb(1)

2
(4)

which is simply the midpoint of the first coordinates of the left- and
rightmost active sensors xa and xb in grid row j. These will be
called endpoints of the active row. Similarly, from sensors in grid
columns, an estimate θ̂(2) of θ(2) is made for every active column.
If there is at least one active row and one active column, then an
estimate θ̂ = (θ̂(1), θ̂(2)) can be made for each pairing of an active
row and active column. For each such pair, the corner point shared
by the row and column is called a decision corner.

In Section 3.1 it will be shown how to choose γ to ensure that
with high probability at least one of the four corners of the kλ× kλ
block containing the source is a decision corner and there are no de-
cision corners outside the block. Section 3.2 describes a distributed
communication protocol that distributes endpoint locations so as to
(1) enable those corners lying on the aforementioned block to deter-
mine whether or not they are decision corners, and (2) to enable such
decision corners to make their estimates of θ.

Note that in the absence of noise, sensors in a grid row (column)
will lie in a single consecutive interval. Although this does not nec-
essarily happen in the presence of noise, results in Section 4 show
that the Midpoint Algorithm works well nevertheless.

3.1. Choosing the threshold

Our choice of γ heavily impacts the performance of the Midpoint
Algorithm. If γ is too large, then the probability of having at least
one decision corner will not be large, i.e., the probability of missed
detection will be too large. If γ is too small, there will be spurious
decision corners, leading to high probability of false alarms and poor
estimates of θ. Thus the goal of this section is to find an upper bound
γ1 and lower bound γ2 such that the these undesirable events occur
with low probability for any threshold satisfying γ2 ≤ γ ≤ γ1.

We begin with the upper bound γ1. Let E1 be the event that at
least one of the corners of the kλ × kλ block containing the source
is a decision corner, thereby indicating a successful detection. We
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want to choose γ small enough that the Pr(E1) ≥ 1 − ε1, where
ε1 is some small tolerance. A useful fact is that the closest row sen-
sor and the closest column sensor to the source are within distance
λ
2

√
k2 + 1. If these sensors are active, then E1 occurs. Therefore,

using this fact and the union bound, it can be shown that

Pr(E1) ≥ 1− 2Pr

(
A

(λ
2

√
k2 + 1)β

+ v ≤ γ
)
.

Since v is Gaussian with known variance σ, equating the RHS of the
above to 1− ε1 yields the fact that if

γ ≤ γ1 ,
2βA

(λ
√
k2 + 1)β

− σQ−1
(ε1
2

)
, (5)

then Pr(E1) ≥ 1 − ε1. In the above, Q(x) = Pr(X > x) for a
zero mean, unit variance Gaussian random variable X , and Q−1 is
its inverse function.

In a similar manner, we calculate a threshold lower bound γ2.
Consider the event E2 that there are no decision corners outside the
kλ× kλ block containing the source, so there are at most four deci-
sions corners. We want to choose γ so that Pr(E2) ≥ 1 − ε2. This
also ensures that the false alarm rate will be at most ε2. Using the
fact that E2 occurs when all sensors farther than kλ from the source
are inactive, it can be shown using the union bound that

Pr(E2) ≥ 1− nPr
(

A

(kλ)β
+ v > γ

)
.

Again, equating the RHS of the above event to 1− ε2 yields the fact
that if

γ ≥ γ2 ,
A

(λk)β
+ σQ−1

(ε2
n

)
, (6)

then Pr(E2) ≥ 1− ε2.
For large k values, the Manhattan grid “block size” kλ becomes

very large, and it becomes physically impossible to detect certain
source locations without incurring a large false alarm rate. Thus,
in our experiments, we only choose values of k small enough that
γ1 > γ2. We found that the Midpoint Algorithm performs better for
large γ, so we set our threshold to be the upper bound γ = γ1.

3.2. Communication protocol and costs

By our choice of γ in the previous section, with high probability
there will be at least one decision corner on the kλ× kλ block con-
taining the source, and there will be no decision corners outside this
block. We now describe a distributed communication protocol by
which sensors efficiently report endpoint data to corner points, en-
abling those that are decision corners to recognize that they are such
and to make their estimates.

Assume sensor clocks are synchronized. Time is slotted and the
system operates with cycles of 8m slots, where m is the number of
sensors in a row or column. The following protocol operates during
the first 4m slots along rows, and repeats during the next 4m slots
along columns.

During the first m time slots, messages are sent left-to-right
across each row of the grid. Specifically, during slot t, only sensor
t of each row may transmit, and neighboring sensor t + 1 listens1.
If sensor t of row j did not hear a message (from t − 1) during the
previous time slot, it knows the first active sensor in its grid row has

1Sensors in adjacent Manhattan grid rows are presumed to be far enough
away (at least kλ) that transmissions from adjacent grid rows do not interfere.

not been found (the first endpoint). It then compares its measured
RSS to the threshold. If yt < γ, sensor t is not active and does not
transmit. However, if yt > γ, sensor t is active and transmits 0 to its
neighbor t+ 1, thereby marking t as the first endpoint.

If, on the other hand, sensor t did hear a message from t − 1, it
increments the message by 1 and transmits the new message to sen-
sor t+1. Thus, each message is an integer representing the distance
to the first active sensor in the row. Message-passing ends after the
message is received by two corner sensors (we assume sensors know
whether they are placed on a corner a priori). This requires an extra
“corner counting” bit to be sent along with each transmission.

During the next m time slots, the sensor order is reversed and
messages are passed right-to-left in a similar manner in order to de-
termine the second endpoint in the row. In some cases, after these
2m time slots, at least one corner knows the locations of both end-
points and can estimate θ(1). However, if both endpoints are less
than k − 2 sensors apart, it is possible that the endpoints lie entirely
between two adjacent corners, and these corners will only know one
endpoint apiece. In this case, the two endpoints (and the sensors in-
between) will know both endpoint locations. Thus, the next 2m time
slots are reserved for the endpoints to transmit the missing endpoint
locations to their closest corner sensor.

As mentioned earlier, this protocol is repeated for columns in
the next 4m time slots. After all 8m time slots, any corner that has
received both horizontal and vertical pairs of endpoints, recognizes
itself as a decision corner and makes an estimate θ̂. It can be seen that
this protocol finds at least one decision corner on the block contain-
ing the source, if there is one, which happens with high probability.

We now find an upper bound to the communication costs of the
protocol. Due to our choice of threshold, it is easy to see that each
decision corner will be within 2k sensors of an endpoint with prob-
ability 1− ε2. It can be shown that this protocol requires at most 4k
transmissions per active row. Each distance transmission requires
dlog2(2k)e bits to transmit endpoint data with an overhead of 1 bit
for corner counting, totaling 2 + dlog2 ke bits per transmission.

4. EXPERIMENTS AND RESULTS

For our experiments, we chose w = 1000, n = 10, 000, and for var-
ious values of k we designed finite Manhattan grids as described in
the introduction. We setA = 10, 000, σ = 1, β = 2, and the thresh-
old γ was set to the upper bound γ = γ1 with ε1 = ε2 = 10−5.
To avoid edge effects, θ was distributed randomly in a kλ × kλ
block near the center of the 1000 m ×1000 m square. We tested
k = 2, . . . , 14, all of which satisfied the condition γ1 > γ2. For
each value of k, the squared error was calculated for estimates pro-
duced by both the Midpoint Algorithm and the POCS algorithm [4].
20,000 trials of this experiment were performed, during which we
did not observe any missed detections or false alarms for either al-
gorithm. In some trials, multiple estimates of θ were generated by
the Midpoint Algorithm using different decision corners. The choice
of these multiple estimates did not impact the overall performance of
our algorithm, so we chose an estimate randomly.

The POCS algorithm was chosen for comparison because of its
high accuracy and low communication costs, needing many fewer
cycles to converge than other algorithms such as [3]. POCS also
required a choice of threshold γPOCS ; we observed that POCS per-
formed better when a slightly smaller threshold was used than the
Midpoint Algorithm. To still ensure a detection probability of at least
1 − ε1 and a false alarm rate less than ε2, we chose γPOCS = γ2.
The POCS algorithm also required a convergence threshold; we used
the value of 10−3 as used in [4]. In addition to running POCS on
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Fig. 2. Accuracy vs. energy cost tradeoff for our proposed Midpoint Algorithm and the POCS algorithm [4] for α = 2 and α = 4. Values of k are labeled
for some points. POCS was also run on a uniform lattice (labeled k = 1) and a randomly distributed network. RMSE vs. energy is shown in (a) and RMedSE
vs. energy cost is shown in (b).

a Manhattan grid, we ran POCS for sensors placed on a uniform
lattice (labeled k = 1) as well as for randomly placed sensors.
For these experiments, we found that thresholds of γlattice = 360
and γrandom = 15 worked well (for comparison, γ2 = 106 with
k = 1, ε1 = ε2 = 10−5). Note that we need a much smaller thresh-
old for the random network because, unlike the uniform lattice, we
are not guaranteed to have a sensor close to the source.

In addition, bounds on the energy cost of each algorithm were
calculated. Suppose there are r active sensors above threshold. The
POCS algorithm needs some number of cycles c to converge and one
extra cycle to calculate an average estimate of θ. Note that c typically
depends on some convergence criteria; we used the default criteria
suggested in [4], which was that the previous estimate of θ during the
last cycle is within 10−3 of the new estimate for the first sensor in the
cycle. For our experiments, c ranged between 4 and 7. Although we
used double precision for θ̂ in our simulation, we assumed that each
coordinate of θ was quantized to 3 significant decimal places when
being transmitted, which corresponds to dlog2(103)e = 10 bits per
coordinate. Thus, bPOCS = 20·(c+1)·r. Finally, we conservatively
assumed that h = 1 for POCS since most transmissions are between
neighbors. This is conservative because some transmissions require
inactive sensors to relay data between active sensors, in which case
h > 1. Thus, for each trial we calculated

EPOCS = 20r(c+ 1)λα.

Note that this is a conservative lower bound on the true energy.
Now we consider the energy cost of the Midpoint Algorithm.

DefineNrow andNcol to be the number of active rows and columns,
respectively. Following the discussion in Section 3.2, at most 4k
transmission are needed per active row/column, and we transmit 2+
dlog2 ke bits per transmission. Each transmission is always between
neighboring sensors, so unlike the POCS algorithm, we always have
that h = 1. Thus, the total energy required is at most

Emidpoint = 4k(2 + dlog2 ke)(Nrow +Ncol)λ
α.

Observe that the 4k transmissions per active row/column is an upper
bound on the number of transmissions. We emphasize that Emidpoint
is a conservative upper bound for the Midpoint Algorithm, whereas
EPOCS is a conservative lower bound for POCS. These energy cost
bounds were calculated for both α = 2 and α = 4. We plotted both
the root mean squared error (RMSE) and root median squared error
(RMedSE) vs. energy cost in Figure 2. Plotting the root median
squared error is useful because of its insensitivity to outliers.

First, we consider the performance of POCS for either value of
α. When POCS was run on a uniform lattice and Manhattan grid,
less energy was used than on a randomly distributed lattice. How-
ever, error also gradually increased as k increased. This shows the
fundamental tradeoff between a random network, a uniform lattice
network, and a Manhattan grid. That is, if we are willing to tolerate
an increase in error, the Manhattan grid requires much less energy.

Now let us compare the performance of the Midpoint Algorithm
to POCS. If we are willing to sacrifice more accuracy, the Mid-
point Algorithm uses even less energy than POCS for all values of
k and fixed α. For a fixed accuracy level, it is possible to make
POCS more competitive by choosing a convergence threshold larger
than 10−3, thereby reducing the required number of transmissions
while decreasing the accuracy. However, even when we increased
this threshold, we found that the Midpoint Algorithm outperformed
POCS for a fixed achievable accuracy. It is interesting to point out
that for k increasing and n fixed, the energy cost of the Midpoint
Algorithm increases for α = 2 and decreases for α = 4. Note that
Emidpoint = O(k1−α/2 log k). Thus, the energy cost increases as
O(log k) for α = 2, but decreases as O(log(k)/k) when α = 4.

5. FUTURE WORK

There is an opportunity in future work to extend the Midpoint Algo-
rithm to the case of unknown source and/or noise power. There may
also be other nonrandom sensor layouts that yield better tradeoffs
between accuracy and communication cost than a Manhattan grid.
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