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Abstract—Within the Neyman-Pearson framework we investi-
gate the effect of feedback in two-sensor tandem fusion networks
with conditionally independent observations. While there is no-
ticeable improvement in performance of the fixed sample size
Neyman-Pearson (NP) test, it is shown that feedback has no effect
on the asymptotic performance characterized by the Kullback-
Leibler (KL) distance. The result can be extended to an interactive
fusion system where the fusion center and the sensor may undergo
multiple steps of interactions.

Index Terms—Distributed detection, Interactive fusion, Neyman-
Pearson test, Kullback-Leibler distance.

I. INTRODUCTION

A simple tandem sensor network typically consists of two
sensors, one of them serving as a fusion center and makes a
final decision using its own observation as well as input from
the other sensor. Practical constraints often dictate that the input
from the other sensor is maximally compressed. The extreme
case, as adopted in the present work, is that the observation at
the other sensor is mapped to a single bit, often referred to as the
local decision. Distributed detection with such a tandem network
has been relatively well understood under the conditional inde-
pendence assumption, i.e., the observations at distributed nodes
are independent conditioned on a given hypothesis. Specifically,
it was known that the optimal local sensor decision rule is in
the form of a likelihood ratio test [1]. Fusion architecture, and
in particular, the impact of communication direction in a two
sensor system was studied in [2].
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one-way tandem fusion 

(b) 

interactive fusion 

Fig. 1. One-way YX and two-way XYX processes

This paper revisits this simple tandem distributed detection
network by replacing the static message passing (from the sensor
node to the fusion node) with an interactive one: it is assumed
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that the fusion center may send an initial bit to the local sensor
based on the observation at the fusion center. The local sensor
then makes a local decision based on its own observation as well
as the input from the fusion center before passing it back to the
fusion ceneter. In the most general setting, as to be discussed
in the end of Section IV, multiple rounds of interactions may
occur. For the most part, we limit ourselves to a single round of
interaction and we refer to this communication protocol as the
so-called interactive fusion. The contrast between the traditional
tandem network and the interactive fusion network is illustrated
in Fig. 1.

Let x be the observation of sensor X and y be the observation
of sensor Y. Then for a one-way tandem network the decision
process (v, w) is based on x and y through dependencies of
the form v = γ(x), w = δ(y, v). Similarly, for the interactive
model the decision processes based on observations x and y
yield outputs (u, v, w), where u = γ(x), v = δ(y, u), w =
ρ(x, v). For simplicity, we refer to the fusion architecture in
Fig. 1(a) as the YX process whereas to that of Fig. 1(b) as the
XYX process.

This interactive fusion network has been studied under the
Bayesian framework and was shown to improve the error
probability performance for fixed-sample size test [3]. This
paper focuses on the Neyman-Pearson framework and we would
like to address whether the additional feedback would improve

1) the performance of the fixed sample size NP test;
2) the asymptotic performance, quantified using the

Kullback-Leibler distance which is known to be the
error exponent of the NP test, a.k.a., the Chernoff-Stein
Lemma [4].

We show that while the answer to the first question is affirma-
tive, feedback does not improve the asymptotic performance,
i.e., the answer to the second question is negative.

We note that [5], [6], and [7] examine the effect of feedback
from a global fusion center to local sensors. Thus this feed-
back setting is noninteractive. Further, [6] and [7] considered
asymptotics with respect to the number of sensors, contrary to
our setup where asymptotics is with respect to the number of
independent samples taken over time.

Our presentation is organized as follows. In Section II we
describe the procedure for obtaining decision rules given an
objective function. The obtained result in Proposition II.1 will
be applied in subsequent sections. We demonstrate in Section
III that iterative fusion does improve performance of a fixed
sample size NP test. For large sample size, however, we
show in Section IV that feedback does not improve detection
performance characterized using the error exponent. Section V
contains concluding remarks.
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II. THE UNDERLYING DECISION THEORY

Consider M simple hypotheses with observation x ∈ X ,

Hi : x ∼ pi(x), i = 0, 1, ...,M − 1, (1)

where pi(x) ≡ p(x|Hi) is the distribution of x under the ith
hypothesis Hi. A decision rule is a mapping defined as

γ : x 7→ i ∈ {0, 1, ...,M − 1}, (2)

where γ is a deterministic function and γ(x) = i denotes
acceptance of the ith hypothesis Hi. We refer to the assignment
γ(x) = i as a decision based on the observation x. Here,
without loss of generality, we assume that the decision output
has the same alphabet as the underlying hypothesis.

The desired decision rule γ so defined is deterministic in the
sense that p(γ(x) = i|x) = δi,γ(x), which means that once
x is given γ(x) is precisely known. As the optimum decision
rule is not necessarily deterministic, we consider the larger set
containing all deterministic and nondeterministic decision rules.
Let us write the generic decision rule as

Γ : x 7→ i ∈ {0, 1, ...,M − 1}, (3)

and let u = Γ(x). Then Γ = γ denotes a deterministic choice
of decision rule. Recall, [8], that the set of Γ is the convex hull
of the set of γ. Therefore

p(Γ(x) = i) =
∑
g

p(g) p
(
γg(x) = i

)
(4)

where g is a random variable with pdf p(g) and is independent
of x. The decision process simply picks the appropriate p(g),
and hence the desired p(Γ(x) = i).

As u is a random variable, making an optimal guess u = i
is equivalent to choosing p(u = i|x) such that some objective
function, which we denote by S, is optimized. Here S is a
function of p(u = i|x) for all i = 0, 1, ...,M − 1 and for all
data points x ∈ X .

In general, 0 ≤ p(u = i|x) ≤ 1, i = 0, 1, ...,M − 1. A
deterministic decision rule implies that p(u = i|x) takes on
only the boundary values 0 and 1. For such cases, the decision
rule is equivalently expressed as a partition of the sample space
into disjoint decision regions, i.e.,

popt(u = i|x) := p(γ(x) = i|x) = δi,γ(x)

=

{
1, γ(x) = i
0, γ(x) ̸= i

}
= IRu=i(x), (5)

where IRu=i(x) ≡ I{x: γ(x)=i}(x) is the indicator function of
the region Ru=i, i.e., the decision region for the ith hypothesis.

In the following, we establish the general structure of the op-
timal decision rule for an important class of decision problems.

Proposition II.1 (Decision regions due to convex objectives).
Let x be a continuous random variable, and suppose the
objective function S to be maximized is either an affine or a
differentiable convex function of p(u|x). For each i suppose
further that the set of data points

Cu=i = {x : ∂S/∂popt(u = i|x) = 0} (6)

has zero probability measure, where ∂S/∂popt(u = i|x) =
∂S/∂p(u = i|x)|p(u=i|x)=popt(u=i|x). Then the resulting optimal
decision regions are given by the following equations. For each
i = 0, 1, ...,M − 1,

Ru=i =
{
x : ∂S/∂popt(u = i|x) > 0

}
. (7)

Proof: We want to maximize S with respect to p(u =
i|x) ∈ [0, 1]. If S is convex in p(u = i|x) over the interval [0, 1]
then its maxima occur at the boundary where p(u = i|x) = 0
or 1. Therefore for each data point x ∈ X ,

popt(u = i|x) = 1 ⇐⇒ ∂S/∂popt(u = i|x) > 0 (8)

and

popt(u = i|x) = 0 ⇐⇒ ∂S/∂popt(u = i|x) < 0. (9)
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Fig. 2. Visualization of S (under Hi, x is accepted and x′ is rejected)

From (6), the two regions defined by x satisfying popt(u =
i|x) = 0 and x satisfying popt(u = i|x) = 1 are measure-wise
complementary. Therefore, equation (8) covers both cases, and
is equivalent to

popt(u = i|x) = IRu=i(x), (10)

where Ru=i = {x : ∂S/∂popt(u = i|x) > 0}.
In Sections III and IV we will use similar expressions to

determine optimal decision regions with the probability of
detection and KL distance as objective functions.

Notice that (10) is an implicit equation in popt(u = i|x)
since the region Ru=i also depends on popt(u = i|x). Therefore
we must proceed to solve the system of equations {popt(u =
i|x) = IRu=i(x) : i = 0, 1, ...,M} to explicitly determine the
decision regions. In the case of distributed networks of sensors
where more than one set of local decision rules are involved,
the resulting system of equations is analytically intractable and
one often has to resort to numerical computation.

Recall that the set of data points satisfying (6) must be null
with respect to the probability measure. Otherwise, we have
a randomized decision rule popt(u = i|x) = IRu=i(x) +∑

j ρij ICu=j (x), where ρij ∈ [0, 1] are arbitrary (i.e., free)
coefficients but which must be consistent with all constraints
on the optimization problem. With this randomization, the
proposition holds for discrete random variables as well.

For ease of presentation, in the rest of the paper we only
consider the case of M = 2, i.e., binary hypotheses with binary
sensor output.

III. THE FIXED SAMPLE SIZE NEYMAN-PEARSON TEST

We will now consider a fixed sample size NP test. From Fig
1 (a) the decisions (v, w) for the YX process are based on the
observations (x, y), which satisfy the conditional independence
relation pi(x, y) = pi(x)pi(y). Similarly Fig 1 (b) describes
the XYX process with decisions (u, v, w).
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The objective function for the NP test is the probability of
detection for which the probability of false alarm must not
exceed a certain fixed value α. The optimization problem is

maximize Pd[w] = p1(w = 1)|p0(w=1)≤α (11)

The Lagrangian for such a problem is given by
L([w], λ) = p1(w = 1) + λ

(
α− p0(w = 1)

)
, 0 ≤ λ < ∞, (12)

where pi(w) =
∑

x,y,v p(w|x, v)p(v|y) pi(x)pi(y) for the YX
process, and pi(w) =

∑
x,v,y,u p(w|x, v)p(v|y, u)p(u|x) pi(x)pi(y) for

the XYX process. We must minimize L([w], λ) over λ in the
dual problem, or for unbiased tests, we can equivalently solve
p0(w = 1) = α for λ(α) since in that case both p1(w = 1) and
p0(w = 1) are increasing in p(w = 1|x, v), p(v = 1|y, u), and
p(u = 1|x) at the optimal point.

Notice that the Lagrangian (12) has essentially the same form
as a Bayes risk function such as the probability of error used in
[3]. Indeed, a paralleled analysis of the decision regions due to
our Lagrangian (12) shows that for a constant signal s in WGN

x = s+ z1, y = s+ z2, (13)

where z1 ∼ N(0, σ2
x), z2 ∼ N(0, σ2

y), under hypotheses

H0 : s = 0, H1 : s = 1, (14)

the XYX process performs better than the YX process.
In this example, we have assumed for simplicity that each

sensor’s observation consists of only one real sample; i.e., we
have the joint sample (x, y), x, y ∈ R = X = Y . Fig. 3. shows
the dependence of the probability of detection on σx when σy is
fixed. The corresponding false alarm probability Pf = α = 0.2.
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Fig. 3. Performance of XYX and YX processes

IV. THE ASYMPTOTIC NEYMAN-PEARSON TEST

A. Derivation of the KL distance
Let us denote any sequence s1, ..., sn by sn, and again

consider the Lagrangian (12) of the fixed size NP test. We use
the two-way XYX process here for illustration but the basic
ideas apply to any number of iterative feedback steps.

Let there be n observation samples or n “processing
blocks” (x1, y1), ..., (xn, yn). We adopt a sample-by-sample
scenario in which the two sensors first go through a sequence
of n iid XY decision processes (u1, v1), ..., (un, vn), where
uk = γk(xk), vk = δk(yk, uk). In this particular scenario we in
theory require that sensor X stores the sequence vn = v1, ..., vn
and then combines it with its own full n-sample observation xn

to make a final decision w = ρ(xn, vn). Therefore,

p1(w) =
∑

xn,vn

p(w|xn, vn)p1(x
n, vn).

By Proposition II.1 the decision region for w is given by

Rw=1 = arg max
R⊂Xn×{0,1}n,

p0(R)≤α

p1(R) =

{
(x

n
, v

n
) :

p1(x
n, vn)

p0(xn, vn)
> λ

}
, (15)

where λ is the Lagrange multiplier as in (12). We could proceed
by Proposition II.1 to find decision regions for vn.

However, we are interested mainly in the asymptotic (i.e.,
large n) nature of the iid decision processes {(uk, vk)}. Recall
that by the weak law of large numbers,

1

n
log

p0(xn, vn)

p1(xn, vn)
=

1

n

n∑
k=1

log
p0(xk, vk)

p1(xk, vk)

n→∞−→ Ep0(x,v) log
p0(x, v)

p1(x, v)
= D(p0(x, v)∥p1(x, v)),

where v = δ(y, u), u = γ(x). By the Chernoff-Stein Lemma,
[4], the test with decision region

R
α
n(p0|p1) =

{
(x

n
, v

n
) : D(p0∥p1) − α ≤

1

n
log

p0(x
n, vn)

p1(xn, vn)
≤ D(p0∥p1) + α

}

is asymptotically optimal with error exponent

− lim
n→∞

1

n
log p1

(
(xn, vn) ̸∈ Rα

n(p0|p1)
)
= D(p0(x, v)∥p1(x, v)), (16)

which is the KL distance that we will now use as our objective
function for the asymptotic performance of the NP test.

We show in the following that with the KL distance as
objective, interactive fusion provides no improvement over one-
way tandem fusion.

B. One-step YX process

Consider a distributed network in which two sensors X and
Y make independent observations x and y. Y then makes a
decision v = γ(y) and passes v to X (See Fig 1. (a)). The
optimal decision v is chosen so as to maximize the KL distance

K[x, v] = D
(
p0(x, v)∥p1(x, v)

)
(17)

at sensor X.
Since pi(x, v) = pi(x)pi(v), we have

K[x, v] = D
(
p0(x)∥p1(x)

)
+

∑
v

p0(v) log
(
p0(v)/p1(v)

)
(18)

where pi(v) =
∑

y p(v|y)pi(y).

Theorem IV.1. The optimal decision region at Y is given by

Rv=1 =

{
y :

∂K[x, v]

∂popt(v = 1|y)
> 0

}
=

{
y :

p1(y)

p0(y)
> λ

}
, (19)

λ =

(
log

β(1 − α)

α(1 − β)

)/(
β − α

β(1 − β)

)
,

where α = P0 [p1(y)/p0(y) > λ] and β = P1 [p1(y)/p0(y) > λ] .

Thus α, β, and λ are coupled with each other.

Due to limited space we omit the details of the proof. The
key observation is that the KL distance is convex in p(v|y)
and so we can apply Proposition II.1. In addition, because of
the constraint p(v = 1|y) + p(v = 0|y) = 1, the derivative of
K[x, v] ≡ KYX requires the differentiation rule

∂p(v|y)/∂p(v′|y′) = (−1)v−v′
δyy′ . (20)

which holds for binary decisions. Notice that the decision
region defined in (19) and the threshold of the likelihood ratio
of y are coupled with each other. Iterative process is thus needed
for finding the optimal λ and the associated α and β.
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The maximum KL distance is given by

KYX
max = K[x] + α∗ log

α∗

β∗ + (1− α∗) log
1− α∗

1− β∗ , (21)

where K[x] = D(p0(x)∥p1(x)) and α∗ and β∗ are the values
of α and β at convergence.

Consider again the hypothesis test described in (14). By
Theorem IV.1, the optimal decision region at Y is Rv=1 =
{y : y > t = σ2

y log λ(t) +
1
2
}, where

λ(t) =

log

Q

(
t−1
σy

)(
1 − Q

(
t

σy

))
Q

(
t

σy

)(
1 − Q

(
t−1
σy

))
/

 Q

(
t−1
σy

)
− Q

(
t

σy

)
Q

(
t−1
σy

)(
1 − Q

(
t−1
σy

))
 .

The corresponding maximum KL distance Kmax[x, v] is

1

2σ2
x

+ Q

(
t∗

σy

)
log

Q

(
t∗
σy

)
Q

(
t∗−1
σy

) +

(
1 − Q

(
t∗

σy

))
log

1 − Q

(
t∗
σy

)
1 − Q

(
t∗−1
σy

) ,

where t∗ is the threshold t at convergence.

C. Two-step XYX process
Let two independent sensors X and Y make observations x

and y as in Section IV-B. X then makes a decision u = γ(x)
and passes u onto Y. Y further makes a decision v = δ(y, u) and
sends it back to X (See Fig. 1. (b)). The optimal decisions u and
v are chosen so as to maximize the KL distance K[x, v] ≡ KXYX

in the final step at X. The KL distance can be written as

K
XYX

= D
(
p0(x, v)∥p1(x, v)

)
= D

(
p0(x)∥p1(x)

)
+
∑
x

p0(x)
∑
v

p0(v|x) log
p0(v|x)
p1(v|x)

,

where pi(v|x) =
∑

u p(u|x)
∑

y p(v|y, u)pi(y).

Theorem IV.2. The optimal decision region at sensor X is given
by

Ru=1 =

{
x :

∂K[x,v]
∂p(u=1|x) > 0

}
=

{
x :
∑

u IRu (x)AuBu > 0

}
(22)

Au = β
(2)
u −α

(2)
u

β
(2)
u (1−β

(2)
u )

, Bu =
β
(2)
1 −β

(2)
0

α
(2)
1 −α

(2)
0

− λ
(2)
u ,

and the optimal decision regions at sensor Y are given by

Rv=1|u =

{
y :

∂K[x,v]
∂p(v=1|y,u) > 0

}
=

{
y :

p1(y)
p0(y)

> λ
(2)
u

}
, (23)

λ
(2)
u =

(
log

β
(2)
u (1−α

(2)
u )

α
(2)
u (1−β

(2)
u )

)/(
β
(2)
u −α

(2)
u

β
(2)
u (1−β

(2)
u )

)
,

where α
(2)
u = P0(Rv=1|u), and β

(2)
u = P1(Rv=1|u).

We again omit the details of the proof but note that the proof
requires Proposition II.1, the modified differentiation rule (20),
and the following lemma whose proof follows immediately from
the properties of a partition of a given set.

Lemma IV.1. Let {Ri : i = 1, ...,m} be any partition of
the data space X = {x}. Then for any continuous multivariate
function f , and for each x ∈ X ,

f

(
m∑
i=1

IRi
(x)ai1,

m∑
i=1

IRi
(x)ai2, ...

)
=

m∑
i=0

IRi
(x) f

(
ai1, ai2, ...

)
, (24)

where aij for all i and j are numbers.

Using (24), the KL distance can be expressed as

KXYX = K[x] +
∑
u,v

P0(Ru) P0(Rv|u) log
P0(Rv|u)

P1(Rv|u)

= K[x] + α(1)f(α
(2)
1 , β

(2)
1 ) + (1− α(1))f(α

(2)
0 , β

(2)
0 ),

where K[x] = D(p0(x)∥p1(x)), α(1) is a constant indepen-
dent of the thresholds, and f(α, β) = α log α

β +(1−α) log 1−α
1−β .

Since the two threshold-dependent terms in KXYX are de-
coupled with respect to threshold dependence, at convergence
λ
(2)
0 = λ

(2)
1 . In other words, the maximization of these two

terms can be carried out independently as each corresponds to
different values of u in the initial feedback from X . Therefore
KXYX

max = KYX
max, and consequently, XYX achieves the same

performance as YX. This observation holds for any probability
distribution. The results for the constant signal in WGN under
hypotheses (14) are shown in Fig. 4, where the KL distances
of YX and XYX processes coincide with each other. Similarly,
the KL distances of XY and YXY also coincide with other.
An interesting observation from the plot is that the two sets of
curves, each corresponding to making final decision at different
nodes, intercept each other at the point when σx = σy = 1. Thus
for this example, it is always better to make the final decision
at the sensor with better signal to noise ratio.
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Fig. 4. Comparison of KL distances of one-way tandem fusion and interactive
fusion with different communication directions. For this plot, we fix σy = 1
throughout while varying σx.

D. Discussion

We have established that two-way feedback is not asymp-
totically better than one-way tandem fusion. The result can
be generalized to interactive fusion networks where multiple
iterations between the two sensors may be involved. Careful
analysis of the N -step feedback process shows that whenever a
sensor’s data is explicitly summed over in the KL distance, the
decision process becomes independent of that particular sensor’s
data. Since repetition of the decision process involving only
one sensor’s data cannot improve performance, it follows that
iterative feedback processing will not improve performance with
respect to the KL distance. Notice, however, that the N -step
iteration process assumes that the sensors have limited memory.
Therefore at the sth step, sensor Z ∈ {X,Y } uses only its
observation z ∈ {x, y} and the preceding decision us−1 from
the previous step at the other sensor, to make its current decision
us = γs(z, us−1). The result is no longer valid if all previous
feedback bits can be collectively processed.

V. CONCLUSION

We have considered a class of decision theory problems that
involve convex objective functions and used it to study two-
sensor tandem fusion networks with conditionally independent
observations. It was established that while feedback improves
the performance of fixed sample size NP test, it does not
affect the asymptotic performance as characterized by the error
exponent of type II error.
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