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ABSTRACT
Uniformly Most Powerful (UMP) centralized detection for the
composite binary hypothesis problem has been well researched.
This paper extends the UMP methodology to the parallel distributed
detection problem, when the local observations are independently
distributed. A collection of general theorems and corollaries define
sufficient conditions for the existence of a UMP parallel Distributed
Detection (UMP-DD) under one set of fusion rules. These same
conditions under another set of general fusion rules result in at least
a Locally Most Powerful Distributed Detection (LMP-DD) rule.
The subtleties of these conclusions are explored using informative
examples that highlight the strengths of this approach and introduce
new groups of UMP-DD tests.

Index Terms—Composite Hypothesis Testing; Uniformly Most Pow-
erful Test; Distributed Detection; Log-concave

I. INTRODUCTION
Distributed detection has been an active research area with a

focus on detection performance analysis and optimization via the
design of the local decision and global fusion rules [1]. Optimal
local sensor decision rules in a distributed binary hypothesis testing
system can be complicated and is a known NP-hard problem [2].
When the sensors are conditionally dependent, the optimal local
sensor decision and global fusion rules are coupled and the form
of the optimal local sensor decision rules is often unknown [3],
[4]. Fortunately, when the local sensor observations are condition-
ally independent where the conditioning is done on each binary
hypothesis, the local sensor decision rule can be optimally chosen
as likelihood quantizers under many inference regimes [5], [6].
One of these regimes is a fixed binary hypothesis testing problem.
Even under this simple model with defined likelihood quantizers,
optimizing a distributed sensor network can be extremely difficult,
as the solution space is non-linear, can be non-convex, and is
coupled to the end fusion rule [1]. Certainly, when the problem
is expanded to include composite binary hypothesis testing, the
optimization becomes even more challenging.

Under the traditional centralized composite testing framework,
Uniformly Most Powerful (UMP) tests are highly desired because
the decision rule is independent of the unknown composite pa-
rameter(s) [7]. For reference, a UMP hypothesis test is a test that
has the greatest Power (detection probability) among all possible
tests of Size (false alarm probability) α, where α ∈ [0, 1] under
the Neyman-Pearson (N-P) Lemma [8]. Centralized UMP testing
and its associated terminology is common, with excellent examples
available in [7]–[9]. This paper extends the UMP concept into the
realm of distributed binary hypothesis testing, which we will call
UMP-Distributed Detection (UMP-DD).

Within distributed detection, UMP-DD tests do exist but the
terminology is less common, if not void. This is partially due to the

complexity of a distributed detection and the mathematics required
to analyze the performance of fusion rules. With that said, the
UMP-DD tests explored by this paper are tightly coupled with the
concept of equal quantizer thresholds at every sensor in a distributed
detection system. This has been studied previously for fixed binary
distributed hypothesis testing. When the hypothesis are fixed, Irving
and Tsitsiklis showed that for two sensors under Independent
Identically Distributed (i.i.d.) Gaussian noise that equal quantizers
are optimal [10]. Warren and Willett analyzed the multi-sensor
fixed and equal observation model to explore sensors with equal
quantizer thresholds with “well behaved densities” [6]. That paper
generally showed that for those well behaved densities under either
AND or OR fusion, that equal sensor thresholds were optimal,
extending the results of Irving and Tsitsiklis beyond two sensors
and Gaussian noise. Additionally, Warren and Willett also showed
that equal sensor thresholds were at least locally optimal for the
general counting (also known as k out of N ) fusion rule.

Along with introducing the UMP-DD terminology, this paper
will establish a generalized framework to both find and prove the
existence of UMP-DD tests, including the definition of sufficient
conditions. In doing so, new classes of UMP-DD test will be in-
troduced by treating the composite parameter as a random variable
versus a constant fixed but unknown parameter. This concept will be
applied to a parallel distributed binary hypothesis detection system
with conditionally independent sensor observations, where the
conditioning is on the respective hypothesis. The composite random
variable is assumed to have a defined a-prior probability density
functions (pdf) that is smooth and log-concave. The conclusions
that follow rely on the generalized log-concave efforts of Prékopa
[11], [12] and to some extent the log-concave probability work by
Bagnoli and Bergstrom [13].

This paper will also extend the work of Warren and Willett for
those cases where the composite parameter is fixed, but unknown
by specifically defining sufficient conditions on the pdfs involved.
A result that follows as a natural corollary to the more general
framework described in the previous paragraph. Similarly, this
framwork can be used to extend the local optimality or LMP-DD of
the general counting rule, but a proof that equal sensor thresholds
are globally optimal (i.e. UMP-DD) remains an open research topic
that will be discussed in detail.

Finally, under the fixed but unknown observation model, we aug-
ment the work mentioned previously by presenting a theorem that
generalizes the UMP-DD model. This theorem defines the optimal
sensor thresholds under monotone fusion rule and monotonic non-
decreasing Likelihood Ratio Test (LRT) conditions for Neyman-
Pearson (N-P) hypothesis testing that do not rely on smooth log-
concave pdfs.
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Fig. 1. A canonical parallel distributed multiple hypothesis testing
system.

II. PARALLEL DISTRIBUTED DETECTION SYSTEMS

Consider a canonical parallel distributed hypothesis testing sys-
tem with N sensors and a single Fusion Center (FC), as illustrated
in Fig. 1. Within this structure, no inter-sensor feedback or FC
to sensor communication is assumed. Under Binary hypothesis
conditions the canonical elements can be formalized as follows:

• Hypotheses: H ∈ {H0, H1}.
• Local sensor observation Xj , j = 1, 2, · · · , N .
• Local sensor output Uj = γj(Xj) ∈ {0, 1}, j = 1, 2, · · · , N

and γj(Xj) the local decision rule.
• Fusion center output U0 ∈ {0, 1} indicating HU0 hypothesis

is accepted.

Boldface capital letters (e.g., X, U) are used to denote vectors
of random variables and boldface lower case letters to denote a
particular realization of the random vector. Additionally, pZ(z)
denotes the pdf of a continuous random variable, where the
shorthand notation of p (z)will be used to indicate that the pdf is
based on the random variable/vector Z. Furthermore, all logarithms
are base e .

Under this notation, the local sensor observations when condi-
tioned on each hypothesis are

p(X|Hi) =

ˆ
Ω

p (X|θ, Hi) p (θ|Hi) dθ, (1)

where θ is the true signal level at the N sensors with a-priori
pdf p (θ|Hi) having support Ω, and p (X|θ, Hi) is the probability
of observing X when θ is received under Hi, i ∈ {0, 1}.
Applications like target detection typically define the H0 hypothesis
as “target absent” (θ = 0N×1) and H1 denotes “target present”
with unknown vector parameter θ; e.g., the target emission power
(θ > 0N×1). We will use the notation θ when H1 is active and θ′

when H0 is active to help indicate that the two values explicitly
differ.

Within the parallel distributed hypothesis testing framework, the
Chair-Varshney (C-V) fusion rule defines the optimal fusion rule
once the local LRT rules are defined and the observations are
conditionally independent [14]. When the observations and local
decisions are i.i.d. with a fixed number of sensors, then the general
C-V fusion rule can be simplified as

Uo =

{
H1

∑N
j=1 Uj ≥ k

H0

∑N
j=1 Uj < k

, (2)

which can be read as the k out of N fusion rule. The OR rule is
defined as k = 1, while the AND rule defined as k = N . All three
variations will be explored in the next section.

III. MAIN RESULTS

Consider the distributed detection problem where both the ob-
servations and local decisions are conditionally independent, that is

p (θ|Hi) =
N∏
k=1

p (θk|Hi). Then the general rule (1) can be written
as

p(X|Hi) =

N∏
k=1

ˆ
Ω

p (Xk|θk, Hi) p (θk|Hi) dθk

=

N∏
k=1

p (Xk|Hi) , (3)

where θk is the signal level at sensor k and p(X|Hi) the resultant
joint conditional pdf. Under this framework the LRT for each sensor
is Lk(Xk) =

´
Ω p(Xk|θk,H1)p(θk|H1)dθk´
Ω p(Xk|θ′k,H0)p(θ′k|H0)dθ′k

, where θk > θ′k under

a composite hypothesis testing structure for k = 1, 2, · · · , N .
The LRT is compared against a quantizer threshold, ηk, with
conditionally independent observations and produces a decision Uk,
which is an optimal test [1]. With this result, the special k out of
N fusion rule in (2) is now applicable.

Before proceeding, it is important to define the term log-concave
as it will be critical to our analysis. Using the definition in [15]

Definition 1. A function f : Rn → R is logarithmically concave
if f (x) > 0 ∀x ∈ domf and log f is concave or − log f is
convex. Defining log 0 = −∞, then f is log-concave if f (x) ≥ 0
and the newly extended log f is concave.

We now explore special cases of (3) that offers sufficient con-
ditions for a UMP-DD test. A key point regarding the following
theorem is that the conditions are not overly restrictive, as many
problems in distributed detection easily meet these constraints, with
examples provided in the sequel.

Theorem 2. If
´

Ω
p (Xk|θk, Hi) p (θk|Hi) dθk is a smooth func-

tion (continuous derivatives), the support Ω is convex and both
p (θk|Hi) and p (Xk|θk, Hi) are log-concave for i ∈ {0, 1} with
p (Xk|θk, Hi) conditionally independent. Then equal quantizers,
η1 = η2 = · · · = ηK = η, are a UMP-DD test under the AND or
OR fusion rules.

The following key theorem will be used in the proof of Theorem
2. Prékopa in [12] with theorem VI, showed that when f (X,Y ),
X ∈ Rn, Y ∈ Rm is log-concave in Rn+m and with A, a convex
subset of Rm, then

g (X) =

ˆ
A

f (X,Y ) dy (4)

is log-concave over all of Rn.
Proof: Let p (θk|Hi) and p (Xk|θk, Hi) be log-concave and

Ω be convex. Since the product of log-concave functions is
log-concave, then p (θk|Hi) p (Xk|θk, Hi) is log-concave. Thus
p (Xk|Hi) =

´
Ω
p (Xk|θk, Hi) p (θk|Hi) dθk is log-concave by

the prior Prékopa Theorem. It is worthwhile to note that for nearly
all log-concave pdfs of interest, Ω is either an open or closed
connected interval in R, which is both convex and concave.

Consider the probability of detection under the AND fusion rule

PD =

N∏
k=1

ˆ
Z1k

ˆ
Ω

p (Xk|θk, H1) p (θk|H1) dθk dxk, (5)
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where Z1k is the critical region for deciding H1. Similarly, the
probability of false detection is

PF =

N∏
k=1

ˆ
Z1k

ˆ
Ω

p
(
Xk|θ′k, H0

)
p
(
θ′k|H0

)
dθ′k dxk. (6)

Since p (Xk|Hi) is log-concave for i = {0, 1}, then PD , 1 −
PD , PF and 1− PF are also log-concave [13]. Therefore, convex
minimization can be used to find the optimal Z1k , which is the
same as finding the optimal quantizer threshold ηk for conditionally
independent observations.

Under the N-P framework, our goal is to maximize PD subject
to PF ≤ α. This is the same as

minimize : − logPD (η)

subject to: − log (1− PF (η)) + log (1− α) ≤ 0, (7)

which is a standard convex minimization problem without equality
constraints [15]. Thus the method of Lagrange multipliers can be
applied to optimize (7). Let L (η, λ) be a Lagrange multiplier
function with

L (η, λ) =

N∑
k=1

− log βk + λ

(
N∑
k=1

− log (1− αk) + C

)
, (8)

where βk =
´ κ1

ηk
p (Xk|H1) dxk, αk =

´ κ0

ηk
p (Xk|H0) dxk, C =

log (1− α) and λ is a Lagrange multiplier. Here, κ1 is the upper
support limit of p (Xk|H1) and similarly for κ0 under H0. Setting
the partial derivatives ∂

∂ηk
L (η, λ) to zero results in

∂
∂ηk

L (η, λ) : p(ηk|H1)−p(κ1|H1)
1−F (ηk|H1)

F (ηk|H0)
p(ηk|H0)−p(κ0|H0)

= λ (9)

where F (·|Hi) is the Cumulative Distribution Function (CDF)
under hypothesis i. Note, p (κi|H1) and p (κi|H0) in (9) are often
zero, as p (κi =∞|Hi) = 0 for most log-concave distributions of
interest. With λ a fixed constant across all N sensors, η1 = η2 =
· · · = ηN = η is a solution to (7). To see this, consider the ratio
of ∂

∂ηk
L (η, λ) to ∂

∂ηj
L (η, λ) for all j 6= k.

The optimality of this solution can be verified using the Karush-
Kuhn-Tucker (KKT) optimality conditions, which are necessary and
sufficient when the objective functions are smooth and convex [15].
With η∗ and λ∗ solutions to (8), the KKT conditions are

primal: − log (1− PF (η∗)) + log (1− α) ≤ 0

dual:λ∗ ≥ 0

comp. slack.:λ∗ (− log (1− PF (η∗)) + log (1− α)) = 0

vanishing grad. :∇L (η∗, λ∗) = 0.

The pdfs ensure λ∗ ≥ 0 and PF ∈ [0, 1] by the smooth function
assumption, meeting the complementary slackness constraint and
the last two constraints follow by construction. The proof under
OR fusion is similar.

This result is interesting because it establishes a general frame-
work to find and prove the existence of UMP-DD tests. This general
framework is applicable to a broad set of problems, including test
with composite parameters that are themselves random variables.
When the composite parameters are no longer random variables,
then the following corollary is applicable.

Corollary 3. When the signal level at each sensor is fixed, but
unknown, such that θk = θ ∀ k so p (Xk|θk, Hi) = p (Xk|θ,Hi)
and p (Xk|θ,Hi) is smooth log-concave for i ∈ {0, 1} on a convex

support Ω. Then thresholds η1 = η2 = · · · = ηN = η are a UMP-
DD test under the AND or OR fusion rules.

This corollary is similar to the special case formulation proposed
by Warren and Willett [6], but here sufficient conditions are defined
for when equal thresholds are optimal and the test is UMP-DD.
Specifically, p (Xk|θ,Hi) must be log-concave and smooth. When
one of these conditions is absent, then UMP-DD is not guaranteed.
An example is presented later using i.i.d. Laplace noise with θk = θ
for all k to highlight this point, as compared to a Gaussian Noise
that is UMP-DD.

We now expand on the previous theorem to address the more
general counting k out of N fusion rule.
Remark 4. Under the k out of N fusion rule and using the
conditions in Theorem 2, then η1 = η2 = · · · = ηN = η are
at least a local minimum or Locally Most Powerful Distributed
Detection (LMP-DD) test. A full proof for this remark follows
the same reasoning in [6] as applicable to Corollary 3, but with
generalized pdfs and will not be replicated here.

The LMP-DD designation implies that within an
ε−neighborhood of η1 = η2 = · · · = ηN = η for{
ε : ε > 0, ε ∈ RN

}
any other selection of the η′ks will result

in a lower PD for a given PF ≤ α N-P constraint. Unfortunately,
the LMP-DD label can not be replaced with the more restrictive
UMP-DD designation because both the PD and PFA equations
in (7) are a combinatorial summation of probabilities that are not
guaranteed convex under the k out of N fusion rule. This results
in a non-convex optimization problem. Hence any solution to a
Lagrange Optimization method similar to Theorem 2 can only
be declared locally optimal (LMP-DD) and not globally optimal
(UMP-DD). However, it is likely that this local optimum is in
fact the global optimum under the k out of N fusion rule, but a
general proof supporting this claim remains an open research topic
in distributed detection.

Next, we explore another special UMP-DD case where both the
fusion and local LRT are monotone. Let the local likelihood ratio
be Lk(Xk) = p(Xk|θ,H1)

p(Xk|θ′,H0)
for any θ′ < θ and k = 1, 2, · · · , N .

Many times, a sufficient statistic for the LRT exists, say Tk (Xk),
which is based on sensor k’s observation. Using this construct and
the widely studied one-sided test, we have the following result.

Theorem 5. Consider a distributed composite hypothesis test-
ing problem with sensor observation model p(X|θ,Hi) =
N∏
k=1

p(Xk|θ,Hi). To test hypothesis H0: θ′ and H1: θ > θ′, if

1) The fusion center employs a monotone fusion rule such that
the probability of deciding 1 is a monotonic function of Uk
and P (U0 = 1|Uk = 1, θ) ≥ P (U0 = 1|Uk = 0, θ) for all θ
and k,

2) The local likelihood ratio Lk(Xk) = p(Xk|θ,H1)
p(Xk|θ′,H0)

is a mono-
tonic non-decreasing function of Tk (Xk) for any θ′ < θ,

then, the optimal local sensor decision rule is

P (Uk = 1|Xk) =


0, Tk (Xk) < η

λ, Tk(Xk) = η

1, Tk(Xk) > η

(10)

under the N-P criterion. As is typical, λ is a randomization constant
and η is the quantizer threshold for each k’th sensor, with 0 ≤ λ ≤
1.
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Table I. UMP-DD Examples
Signal Model Noise Comment

θk = θ ∈ Θ1 Wk
iid∼ N (0, 1) Corollary 3 and [6]

θk
iid∼ Unif (a, b) Wk

iid∼ N (0, 1) Equal Uncertainty Model

θk
iid∼ Exp (λ) Wk

iid∼ N (0, 1) Exponential Signal Decay

θk ∼ N
(
0, σ2

)
Wk

iid∼ N (0, 1)
Energy Detection

Fixed
(
σ2 > 1

)
θk ∼ N

(
0, σ2

k

)
Wk

iid∼ N (0, 1)
Energy Detection

σ2
k
iid∼ Unif (1, b) Random

(
σ2
k ≥ 1

)

Proof: From the N-P Lemma, Tk (Xk) is the Uniformly
Most Powerful (UMP) test of size αk. With a monotone fu-
sion rule and conditional independence, optimization of Pf =
f (α1|θ′, · · · , αK |θ′) ≤ α and Pd = f (β1|θ, · · · , βK |θ) is the
same as separately optimizing Tk (Xk) for all k, where βk|θ is the
k’th probability of detection given θ and similarly for αk|θ′.

It is important to note that all UMP-DD under Theorem 2 meet
the conditions of Theorem 5, which is more general as it does not
specifically rely on smooth log-concave pdfs.

Remark 6. As shown in Theorem 5, the optimal local sensor design
rule is a single threshold quantizer based on a sufficient statistic,
Tk(Xk), similar to the centralized case [9]. Unlike the centralized
case, a system-wide Uniformly Most Powerful Distributed Detector
(UMP-DD) often does not exist.

IV. ILLUSTRATIVE EXAMPLES

This section will highlight the sufficient conditions of log-
concave and smooth probability distributions to guarantee UMP-
DD. The general observation model

H1 (θ > 0) , Xk = θk +Wk,
Ho (θ′ = 0) , Xk = Wk,

(11)

where θk is the signal and Wk is the noise received by the k′th
sensor. With different θk, this model is common for problems
in distributed detection systems, including Collaborative Cognitive
Radio Spectrum Sensing. With the theorems and corollary of the
previous section, it is easy to show that the θk models appearing
in Table I are UMP-DD. As discussed during the introduction, the
first model with a fixed but unknown signal was shown optimal in
[6]. The next four UMP-DD models are new and describe cases
where the signal level at each sensor are randomly distributed.
The last two are particularly interesting as they describe UMP-DD
Energy Detectors for both fixed and random energy levels. While all
cases presented are based on zero mean Gaussian noise, any other
smooth log-concave noise distribution with appropriate support
would also be UMP-DD. Note, under AND fusion, Gaussian noise,
and PFA ≤ α constraint for N sensors, the local sensor threshold is
determined using, η = Q−1

(
α

1/N
)

, where Q−1 (·) is the inverse
standard normal complementary distribution function.

The last point regarding smooth log-concave pdfs is important
enough to present an instructive counter example that appears
UMP-DD, but is not. Specifically, when the noise follows a Laplace
distribution versus a Gaussian pdf for the same observation model,
then the test is no longer UMP-DD.
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Fig. 2. ROC Curves under Laplace Noise

Consider the fixed but unknown observation model with two
sensors, N = 2, and the noise, Wk, following a zero mean i.i.d.
Laplace distribution. Since the Laplace distribution is not a smooth
function at the mean, we expect that even with equal observations,
θ1 = θ2, that a UMP-DD is not possible under AND or OR fusion.
The i.i.d. Laplace noise distribution is

p (W |µ, b) =
1

2b
e−
|w−µ|
b , (12)

with mean µ = 0 and width parameter b = 0.75. We now consider
the Receiver Operating Characteristic (ROC) curves based on this
noise distribution. The ROC curves will show that asymmetric
quantizer thresholds are optimal for some false alarm (α) levels,
thus the UMP-DD does not exist under the AND fusion rule. These
results appear graphically in Fig. 2 for η1 = η2, η1 6= η2, and
θ1 = θ2 = 1, where the latter η2 is set such that the second sensor
generates a constant detection rate of 99.9% for all η1. These data
clearly indicate that better detection performance for some false
alarm rates can be achieved using asymmetric quantizer thresholds
when 0.28 < PFA < 0.80. Thus, the UMP-DD does not exist for
a fixed θ = 1, so it clearly does not exist for all θ.

V. CONCLUSION

Two theorems defining when a UMP-DD exists has been pre-
sented. These theorems generalize and extend the current research
in the area of distributed detection. The first theorem generally
defines when a UMP-DD exists under AND and OR fusion rules.
The critical constraint is that the conditionally independent ob-
servations be smooth, log-concave pdfs even if the observations
model is random. Using this result, an UMP-DD energy detector
for both fixed and random energy levels was also introduced. Next,
the same theorem was extended to show that at least a locally most
powerful (LMP-DD) exist for the k out of N fusion rule, where
we conjecture that this LMP-DD is actually UMP-DD. The second
theorem defines that a single threshold quantizer is optimal under
the N-P criterion under appropriate conditions and that these tests
are also UMP-DD.
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