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Abstract— In this paper, we consider a decentralized detection
problem in which a number of sensor nodes collaborate to
detect the presence of an unknown deterministic signal. Due to
stringent power/bandwidth constraints, each sensor quantizes its
local observation into one bit of information. The binary data
are then sent to the fusion center (FC), where a generalized
likelihood ratio test (GLRT) detector is employed to make a
global decision. In this context, we study one-bit quantizer design
and analyze the asymptotic performance of the one-bit GLRT
detector for cases where the quantized data are sent to the FC
via perfect or imperfect channels. Simulation results are carried
out to corroborate our theoretical analysis and to illustrate the
performance of the proposed scheme.

Index Terms— Decentralized detection, one-bit quantization,
wireless sensor networks (WSNs).

I. INTRODUCTION

The problem of decentralized detection in wireless sensor
networks (WSNs) has attracted much interest over the past
decade. A large amount of studies in decentralized detection
[1]–[9] assumes that the knowledge of the probability density
function (pdf) under either hypothesis is available. In this
case, a local likelihood ratio test (LRT) can be conducted at
each sensor and the local binary decision is sent to a fusion
center (FC) to reach a global decision. The LRT has been
proved to be the optimal local sensor decision for a binary
hypothesis problem under both Bayesian and Neyman-Pearson
criteria [1], [2]. Nevertheless, the search of optimal local
detectors is still exponentially complex because the optimal
local quantization thresholds are generally different and need
to be jointly determined along with the global fusion rule [3],
[5].

In this paper, we consider the problem of detecting the
presence of an unknown deterministic signal. Due to the
lack of signal knowledge, one cannot compute the local
likelihood ratio at each sensor. A natural strategy in this
case is to send sensor’s original observations to the FC. A
generalized likelihood ratio test (GLRT) is then conducted
to make a final decision. Sending original observations to
the FC, however, could be prohibitive for sensor networks
whose bandwidth and energy are severely constrained. To
meet stringent bandwidth/energy constraints, we consider the
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strategy where each sensor quantizes its local observation into
one bit of information. A GLRT detector based on one-bit
quantized data can be developed to form a global decision. In
this framework, we examine the one-bit quantization design
and analyze the asymptotic performance of the corresponding
one-bit GLRT detector for both perfect channels and binary
symmetric channels between sensors and the FC. Our analysis
shows that, unlike the LRT fusion rule in which optimal local
quantization thresholds are generally different, the optimal
quantization thresholds for multi-sensor GLRT fusion are
identical and should be equal to zero, irrespective of sensor
observation disparities. In addition, when the optimal quanti-
zation thresholds are selected, the one-bit GLRT detector that
uses only ⌈Nπ/2⌉ sensors, with each sensor sending one bit of
information, can attain the same performance as the GLRT de-
tector that requires original sensor observations of N sensors.
Here ⌈x⌉ denotes the ceiling operator that gives the smallest
integer no smaller than x. Thus considerable bandwidth/energy
savings can be achieved. Multi-sensor GLRT fusion based on
quantized data was also studied in [10], [11] in the context
of detecting a source with unknown locations and fusing
dependent decisions. Nevertheless, optimal quantizer design
and achievable asymptotic performance were not investigated.
In some other studies [12], [13], decentralized detection of
unknown deterministic signal based on quantized data were
considered, but the fusion rule is ad hoc and not optimized.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem in which
a number of sensors collaborate to detect the presence of an
unknown scalar deterministic signal θ. The binary hypothesis
testing problem is formulated as follows:

H0 : xn = wn,

H1 : xn = hnθ + wn, n = 1, . . . , N (1)

where xn denotes the nth sensor’s observation, hn ∈ R is
the known observation coefficient defining the input/output
relation of the nth sensor, wn denotes the additive Gaussian
noise with zero mean and variance σ2

n, and the noise is as-
sumed independent across the sensors. To meet stringent band-
width/power budgets in wireless sensor networks (WSNs),
each sensor quantizes its real-valued observation into one bit of
information. We first assume an ideal channel between sensors
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and the fusion center (FC) through which the date can be
received without distortion. An imperfect link scenario where
the binary data are sent through binary symmetric channels
will be considered in Section V. For each sensor, given a
quantization threshold τn, the binary data bn is given by

bn = sgn(xn − τn), ∀n = 1, . . . , N (2)

where sgn(x) = 1 if if x > 0, otherwise sgn(x) = 0. Upon
receiving binary data {bn}

N
n=1

, the FC forms a final decision
about the absence or presence of θ. The problem of interest
is to determine the one-bit quantizer for each sensor, and to
develop a detector to detect θ given {bn}

N
n=1

for the FC.

III. GLRT DETECTOR

Suppose the quantization threshold τn is predetermined for
each sensor. A generalized likelihood ratio test (GLRT), which
replaces the unknown parameter with the maximum likelihood
estimate (MLE), can be used to detect θ. For our case where
there is no unknown parameter under H0, the GLRT decides
H1 if

TQ(b) ,
p(b|θ̂;H1)

p(b|H0)
> η (3)

where the subscript ‘Q’ stands for the one-bit quantization
scheme, b , [b1 b2 . . . bN ]T , θ̂ is the MLE of θ, and η is a
threshold determined by the specified false alarm probability.
The MLE of θ can be computed by maximizing the log-
likelihood function of θ

θ̂ = argmax
θ

L(θ) (4)

where the log-likelihood function L(θ) can be written as

L(θ) , logP (b1, . . . , bN ; θ)

=
N
∑

n=1

{

bn log
[

Fwn
(τn − hnθ)

]

+ (1− bn) log
[

1− Fwn
(τn − hnθ)

]}

(5)

by noting that {bn} are independent and the probability mass
function (PMF) of bn is given by

P (bn; θ) =
[

Fwn
(τn − hnθ)

]bn[

1− Fwn
(τn − hnθ)

]1−bn

(6)

in which Fwn
denotes the complementary cumulative density

function (CCDF) of wn. It can be readily verified that L(θ)
is a concave function for Gaussian noise [14]. Thus the ML
estimation of θ is a well-behaved numerical problem and any
gradient-based search starting from a random initial estimate
is guaranteed to converge to the global maximum. Substituting
θ̂ back to (3), we can compute the generalized likelihood ratio
and make a final decision.

IV. OPTIMAL QUANTIZER DESIGN AND ASYMPTOTIC

PERFORMANCE ANALYSIS

In this section, we study the optimal one-bit quantization
design for each sensor and analyze the asymptotic performance
of the GLRT detector. From [15], we know that the modified
test statistic 2 lnTQ(b) asymptotically follows

2 lnTQ(b)
a
∼

{

χ2

1
under H0

χ′2
1
(λQ) under H1

(7)

where χ2

ν denotes a central chi-squared distribution with ν
degrees of freedom, and χ′2

ν(λ) denotes a non-central chi-
squared distribution with ν degrees of freedom and noncen-
trality parameter λ. The noncentrality parameter λQ can be
computed as

λQ = (θ1 − θ0)
T I(θ0)(θ1 − θ0) (8)

where θ0 = 0 and θ1 = θ denote the value of θ under H0 and
H1 respectively, and I(θ) denotes the Fisher information (FI)
which is given by

I(θ) = −E

[

∂2L(θ)

∂θ2

]

=

N
∑

n=1

h2

np
2

wn

(τn − hnθ)

Fwn
(τn − hnθ)[1− Fwn

(τn − hnθ)]
(9)

and pwn
(x) denotes the probability density function (pdf) of

wn. We see that the noncentrality parameter is a function of
the quantization thresholds {τn}Nn=1

. Clearly, given a specified
false alarm probability, a larger noncentrality parameter λ
results in better detection performance. Therefore the optimal
quantization thresholds are those that maximize the noncen-
trality parameter λQ:

max
{τn}

λQ = θ2
N
∑

n=1

h2

np
2

wn

(τn)

Fwn
(τn)[1− Fwn

(τn)]
(10)

The above optimization can be decoupled into a set of inde-
pendent quantization threshold design problems

max
τn

g(τn) ,
p2wn

(τn)

Fwn
(τn)[1− Fwn

(τn)]
∀n (11)

For the Gaussian random variable wn, the function g(τn) is a
unimodal, positive and symmetric function attaining its max-
imum when τn = 0 [14]. Therefore the optimal quantization
threshold for each sensor is given by

τ∗n = 0 ∀n (12)

Substituting the optimal quantization thresholds back into (10),
the largest achievable noncentrality parameter of one-bit GLRT
detector is given by

λQ =
2θ2

π

N
∑

n=1

h2

n

σ2
n

(13)
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Note that the optimal quantization thresholds given in (12)
holds valid irrespective of observation disparities across sen-
sors. This is different from the likelihood ratio test (LRT)-
based fusion rule in which optimal local quantization thresh-
olds are generally different and functions of observation and
channel parameters. Optimal one-bit quantization design was
also studied in the context of decentralized estimation. Nev-
ertheless, it turns out that, for decentralized estimation (e.g.
[14]), the optimal quantizer design requires the knowledge of
the unknown signal, which makes the acquisition of optimal
quantization thresholds impossible. Our result, in contrast, is
very encouraging in that the optimal quantization thresholds
are independent of the unknown signal to be detected.

A. Comparison With The Clairvoyant GLRT Detector

It is interesting to examine the performance of the one-bit
GLRT detector as compared with a GLRT detector that has
full access to sensors’ original observations (also referred to as
the clairvoyant GLRT detector). The latter detector provides
a bound on the achievable performance of all rate-constrained
methods. For the clairvoyant detector, its modified test statistic
asymptotically follows

2 lnTNQ(x)
a
∼

{

χ2

1
under H0

χ′2
1
(λNQ) under H1

(14)

where the subscript ‘NQ’ represents no quantization, and λNQ

can be easily computed and given as

λNQ = θ2
N
∑

n=1

h2

n

σ2
n

(15)

Comparing (13) with (15), we quickly reach that

λQ =
2

π
λNQ (16)

When hn = h and σ2

n = σ2 for all n, the above relationship
implies that the performance loss of the one-bit scheme due
to quantization can be compensated by slightly increasing the
number of sensors by a factor of π/2. In other words, to
meet the same detection performance, the number of sensors
required by the one-bit GLRT detector is π/2 times the number
of sensors used by the clairvoyant GLRT detector. The one-bit
scheme, however, may still be considered more efficient than
the clairvoyant detector in a rate distortion sense since it only
needs to transmit a total number of ⌈Nπ/2⌉ bits, in which ⌈x⌉
denotes the ceiling operator that gives the smallest integer no
smaller than x, while the clairvoyant detector requires sending
N real-valued messages to the FC.

For the general case where sensors’ local signal-to-noise
ratios (SNRs) {h2

n/σ
2

n} are different, we cannot guarantee that
the one-bit GLRT scheme with ⌈Nπ/2⌉ sensors achieves the
same performance as the clairvoyant GLRT detector using N
sensors. Nevertheless, if sensors in the network are uniformly
distributed and the number of sensors is sufficiently large, then
we can expect that the percentage of sensors corresponding to
a certain SNR remains fixed. Therefore increasing the number
of sensors by a scaling factor would result in an increase in

the noncentrality parameter by approximately a same factor.
In this case, our argument made in the last paragraph remains
valid.

V. EXTENSION TO THE IMPERFECT CHANNEL CASE

The previous section assumes that the one-bit binary data
can be transmitted to the FC without any distortion. In this
section, we consider an imperfect link scenario where the one-
bit quantized data are sent to the FC over binary symmetric
channels (BSC), i.e.

yn =

{

bn with probability 1− p

1− bn with probability p

where yn denotes the received data and p is the crossover
probability of the BSC channel. Our objective is to detect
θ based on received data {yn}. Again, the modified test
statistic for the GLRT detector asymptotically follows the same
distributions as that of (7), except with a different noncentrality
parameter under the alternative hypothesis. To evaluate the
detection performance in the presence of transmission errors,
we need to compute the FI and the corresponding noncentrality
parameter. For the channel model being considered here, the
PMF of the received data yn is given by

P (yn; θ) = P (yn = bn) · (1− p) + P (yn = 1− bn) · p

= (1− p) · [Fwn
(τn − hnθ)]

yn [1− Fwn
(τn − hnθ)]

1−yn

+ p · [Fwn
(τn − hnθ)]

1−yn [1− Fwn
(τn − hnθ)]

yn

(17)

The likelihood function is a product of the PMFs associated
with {yn}. The FI can be computed by taking the second-order
derivative of the likelihood function

IQ-BSC =

N
∑

n=1

{

(1− 2p)2h2

np
2

wn

(τn − hnθ)

[p+ (1− 2p)Fwn
(τn − hnθ)]

×
1

[1− p− (1− 2p)Fwn
(τn − hnθ)]

}

(18)

where the subscript ‘Q-BSC’ stands for the one-bit quan-
tization scheme with its quantized data transmitted through
BSC channels. From (8), the noncentrality parameter can be
computed as

λQ-BSC = θ2(1− 2p)2
N
∑

n=1

{

h2

np
2

wn

(τn)

[p+ (1− 2p)Fwn
(τn)]

×
1

[1− p− (1− 2p)Fwn
(τn)]

}

(19)

As expected, the noncentrality parameter λQ-BSC not only
depends on the quantization thresholds {τn}, but also on
the crossover probability p. Given a specified p, the optimal
quantization threshold for each sensor can be obtained by
solving

max
τn

p2wn

(τn)

[p+ (1− 2p)Fwn
(τn)][1− p− (1− 2p)Fwn

(τn)]
(20)
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The above optimization can be re-expressed as

min
τn

∆+ Fwn
(τn)(1− Fwn

(τn))

p2wn

(τn)
(21)

where ∆ , (p− p2)/(1− 2p)2 is a positive value. Since both
∆/p2wn

(τn) and Fwn
(τn)(1 − Fwn

(τn))/p
2

wn

(τn) attain their
minima when τn = 0, the optimal quantization threshold is
independent of the probability p and equal to zero, i.e.

τ∗n = 0 ∀n (22)

When the optimal quantization thresholds are adopted, the
noncentrality parameter λQ-BSC achieves its maximum:

λQ-BSC =
2θ2(1− 2p)2

π

N
∑

n=1

h2

n

σ2
n

(23)

Observing (13) and (23), we have

λQ-BSC = (1− 2p)2λQ (24)

This relationship quantifies the performance loss due to im-
perfect channel links. Additionally, it tells us how many more
sensors are needed in order to achieve the same performance
as the error-free one-bit GLRT detector and the clairvoyant
detector.

VI. SIMULATION RESULTS

We provide simulation results to corroborate our analysis
and to illustrate the performance of the proposed one-bit GLRT
scheme. We compare the one-bit GLRT scheme with the
clairvoyant detector that has full access to sensors’ original
observations. In our simulations, we assume a homogeneous
scenario where all sensors have identical observation qualities
with hn = 1 and σ2

n = 1 for all n. Optimal quantization
thresholds are selected for the proposed schemes in our
experiments, i.e. τn = 0, ∀n. Fig. 1 plots the detection
probabilities of the clairvoyant GLRT detector and the one-bit
GLRT detector (with perfect/imperfect links between sensors
and the FC) as a function of the number of sensors. The
crossover probability for the BSCs is set to be 0.2, i.e.
p = 0.2. In the figure, solid lines represent the theoretical
asymptotic performance, while the plus marks, +, represent
the performance of the Monte Carlo experiments obtained
by averaging over 105 independent runs. From Fig. 1, we
see that the theoretical asymptotic analysis provides a good
approximation of the experimental performance, even when
the number of sensors is small. In addition, it can be observed
that to achieve the same detection probability, say, PD = 0.8,
the one-bit GLRT detector (with perfect links) requires about
40 sensors, which is approximately π/2 times the number of
sensors needed by the clairvoyant detector (the clairvoyant
detector requires about 25 sensors to achieve PD = 0.8).
The one-bit GLRT detector incurs considerable performance
degradation due to imperfect transmissions. From (24), we
know that to attain a same detection rate, the number of
sensors required in the presence of transmission errors is
1/(1− 2p)2 times that for the error-free case. Hence to attain
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Fig. 1. Detection probability vs. number of sensors for one-bit GLRT detector
and the clairvoyant detector, PFA = 0.1.

a detection probability of 0.8, the required number of sensors
is 40/(1 − 2p)2 ≈ 111. As observed from the figure, this
theoretical prediction coincides with our simulation result very
well.

VII. CONCLUSIONS

We studied multi-sensor GLRT detection fusion based on
one-bit quantized data. The optimal quantization thresholds
for sensors are shown independent of the unknown signal
to be detected, and are equal to zero for both perfect links
and imperfect binary symmetric channels between sensors
and the FC. Our analysis indicates that the proposed one-bit
GLRT scheme can achieve the same detection performance
as a clairvoyant detector by slightly increasing the number of
sensors by a factor of π/2. Simulation results were provided
to corroborate our analysis and to illustrate the performance
of the proposed scheme.
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