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ABSTRACT

In this paper, we consider the problem of state estimation of a dy-
namical system in a multi-agent network. The agents are sparsely
connected and each of them observes a strict subset of the state vec-
tor. The distributed algorithm that we propose enables each agent to
estimate any arbitrary linear dynamical system with bounded mean-
squared error. To achieve this, the ratio of the algebraic connectivity
and the largest eigenvalue of the graph Laplacian has to be larger
than a lower bound determined by the spectral radius of the system’s
dynamics matrix. This extends the notion of Network Tracking Ca-
pacity introduced by other authors in prior work. We accomplish
this by introducing a new class of estimation algorithm of dynamical
systems that, besides a (consensus + innovations) term, also includes
consensus on the innovations.

Index Terms— State estimation, distributed algorithm, multi-
agent network, consensus, innovations

1. INTRODUCTION

The problem that is being addressed in this paper is the estimation of
potentially unstable linear dynamical systems. The system is being
observed by a set of agents, where each agent can observe only a
small fraction of the entire state vector. The agents need to obtain
an unbiased estimate of the state vector on the basis of its own ob-
servations and communications with its neighbors. The connectivity
among the agents is very sparse and they can communicate among
themselves only once per evolution of the dynamical state. These
kinds of problems have applications in smart grid, robotics, power
systems and in monitoring physical processes.

In similar lines, single time-scale parameter estimation has been
studied in [1]; and [2] analyzed the convergence rate of a mixed time
scale parameter estimation algorithm. The authors introduced the
notion of (consensus + innovations) term in distributed estimation
of static parameter. Distributed approaches have also been extended
to dynamic parameter estimation in [3, 4, 5]. But in these papers the
estimation algorithms perform consensus in between each evolution
step of the dynamical system.

Recently single time-scale estimation of dynamical systems has
been addressed in [6, 7, 8, 9]. In [6] and [7], the authors introduced
the concept of Network Tracking Capacity (NTC), which is defined
as the largest 2-norm of the system matrix that can be estimated with
bounded error. The NTC has been characterized as a function of
the observation model and the Laplacian matrix of distributed net-
work. In [8] and [9], the authors employed genericity properties of
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the dynamical systems from structured systems theory, to derive re-
sults on the topology of the agent communication graph and sensor
placement such that a stable distributed estimator can be designed.

In this paper, we have introduced a new term called pseudo-
innovations which is a modified version of the innovations. The
algorithm consists of consensus on pseudo-innovations term, in ad-
dition to the (consensus + innovations) term. This kind of algorithms
restricts the conventional way of analyzing the stability and perfor-
mance of the estimator. Hence we have shown that the distributed es-
timator is asymptotically unbiased to the centralized estimator. The
centralized estimator can track any dynamical system with bounded
mean-squared error; hence the distributed estimator can be designed
such that it can also track any arbitrary system with bounded mean-
squared error. In [6] and [7], the ability of the estimator to track
a system depends on the NTC, which is a function of both network
topology and the observation model. In contrast, our estimator needs
the ratio of the algebraic connectivity and the largest eigenvalue of
the graph Laplacian to be lower bounded, where the bound is deter-
mined by the spectral radius of the system matrix.

We now describe the organization of the rest of the paper. Sec-
tion 2 introduces the preliminary background on dynamical system
estimation. Section 3 includes the problem formulation of the dis-
tributed algorithm. In Section 4 the asymptotic unbiasedness of the
algorithm is proved. Section 5 deals with the design of the different
parameters of the estimator. In Section 6 we provided simulation
result, followed by concluding remarks in Section 7.

2. PRELIMINARIES AND BACKGROUND

Consider a linear discrete-time dynamical system given by:

θ(i+ 1) = θ(i) +Wphθ(i) + v(i) (1)

where: θ(i) ∈ RM is the state vector; i is the discrete time index;
the arbitrary system matrix is Wph ∈ RM×M ; the initial condition
of the state vector is θ(0) ∼ N (θ̄0,Σ0); the noise in the system
evolution is v(i) ∼ N (0, V ).

The dynamical system in (1) is to be estimated by a network of
N agents. Each agent makes noise corrupted independent observa-
tions of linear functions of the state vector. The observation model
at the nth agent:

zn(i) = Hnθ(i) + rn(i) (2)

where: zn(i) ∈ RMn is the output vector at agent n; the obser-
vation matrix is Hn ∈ RM×Mn ; the observation noise is rn(i) ∼
N (0, Rn). The input noise {v(i)}, the observation noise {rn(i)},
and the initial state {θ(0)} are uncorrelated random vectors. More-
over the noise sequences {v(i)} and {rn(i)} are statistically inde-
pendent over time.
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We assume that the system (1) is unobservable at each of the
agents, but if we combine the local observation models, then the
resultant global observation model (3) is assumed to be observable.

z(i) = Hθ(i) + r(i) (3)

where, z(i) =

 z1(i)
...

zN (i)

 , H =

H1

...
HN

 , r(i) =

 r1(i)
...

rN (i)

 (4)

the global observation matrix is H and the noise is r(i) ∼ N (0, R),
(R � 0), where R = blockdiag[R1, . . . , RN ].

The pair (I+Wph, H) is observable, but the pairs (I+Wph, Hn)
are unobservable ∀n. In our model, we have assumed that the system
is also distributedly observable, i.e., the following matrix, G, is full
rank.

G =
1

N
HTH =

1

N

N∑
n=1

HT
nHn (5)

The undirected graph G = (V, E) represent the communications in
the multi-agent network. We define the open neighborhood Ωn and
closed neighborhoodNn of agent n as follows:

Ωn = {l|(n, l) ∈ E}, Nn = {n}
⋃
{l|(n, l) ∈ E}

The multi-agent network is assumed to be connected. Then the
eigenvalues of the positive semi-definite Laplacian matrix L of G
are 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L).

In distributed estimation problems, the challenge lies in estimat-
ing unstable systems. We will consider (1) to be a potentially un-
stable, i.e., the 2-norm of the system matrix A = (IM + Wph) is
a = ‖A‖ > 1. In our model, we make the assumption that

γ =
λ2(L)

λN (L)
≥ a− 1

a+ 1
(6)

The consensus speed factor γ, defined as the ratio of the algebraic
connectivity and the largest eigenvalue of L, needs to be lower
bounded, as in (6), to ensure that the agents in the network come to
a consensus at a rate faster than the dynamics of the system.

3. PROBLEM FORMULATION

With the assumptions mentioned in Section 2, in this section we for-
mulate the distributed algorithm for the state estimation of (1). In
the network of N agents, each agent aims to obtain an estimate of
the state vector θ(i). At time index i, given the observations up to
time i−1, let the state estimate of agent n be denoted by xn(i). The
algorithm consists of the following three steps:

1. State Fusion: First each agent fuse its estimate with the esti-
mates of its neighbors as

xn(i) = xn(i)− β
∑
l∈Ωn

(xn(i)− xl(i)) (7)

where: β is the consensus parameter and the initial condition is
xn(0) = θ̄0,∀n.

2. Pseudo-innovations Estimate: We define the pseudo-innovations
νn(i) at each agent n:

νn(i) = HT
n zn(i)−HT

nHnxn(i) (8)

Each agent aims to obtain an estimate, ν̂n(i), of the global average
of the pseudo-innovations. It first fuses its estimate with that of its
neighbors,

ν̂n(i) =
∑
l∈Nn

wnlν̂l(i) (9)

and then update the estimate

ν̂n(i+ 1) = ν̂n(i) + (νn(i+ 1)− Cnν̂n(i)) (10)

where W = {wnl} is the consensus weight matrix with the same
sparsity as the graph Laplacian L and Cn is the local pseudo-
innovations gain matrix. The initial condition is ν̂n(0) = νn(0).

3. Predictor: In this step, an agent combine the outputs of the
previous two steps and multiply it with the system matrix to predict
the next state estimate as:

xn(i+ 1) = (IM +Wph)(xn(i) +Kn(i)ν̂n(i)) (11)

where Kn(i) is the local estimator gain at agent n.

In compact notation, equations (7)-(11) can be written as:

x(i) = x(i)− β(L⊗ IM )x(i) (12)

ν(i) = DT
Hz(i)−DHx(i) (13)

ν̂(i) = (W ⊗ IM )ν̂(i) (14)

ν̂(i+ 1) = ν̂(i) + (ν(i+ 1)− Cν̂(i)) (15)
x(i+ 1) = (IN ⊗ (IM +Wph))(x(i) +K(i)ν̂(i)) (16)

where:

x(i) =

x1(i)
...

xN (i)

 , ν(i) =

 ν1(i)
...

νN (i)

 , ν̂(i) =

 ν̂1(i)
...

ν̂N (i)


and the blockdiagonal matrices are DH = diag{H1, . . . , HN},
DH = diag{HT

1 H1, . . . , HNH
T
N}, C = diag{C1, . . . , CN} and

K(i) = diag{K1(i), . . . ,KN (i)}.

4. RESULTS

First we prove the unbiasedness of the pseudo-innovations estimate.
The aim is to estimate the global average of the pseudo-innovations
of all the agents denoted by νavg(i) = 1

N
(1N ⊗ IM )T ν(i). Let

δn(i) = νn(i+ 1)− νn(i) denote the change in pseudo-innovations
at agent n. Then we can write

νavg(i+ 1) = νavg(i) + δavg(i) (17)

From the concepts of centralized Kalman Filtering, it is evident that
δavg(i) is a zero-mean noise process. It can be proved by taking
expectation on both sides of equation (17) .

Lemma 1 The pseudo-innovations at nth agent is a noise corrupted
linear function of the average pseudo-innovations, i.e.,

νn(i) = G−1HT
nHnνavg(i) + ζn(i) (18)

ζn(i) is a noise process which is zero-mean over space and time.

Proof It can be proved by summing both sides of equation (18) from
n = 1 toN and premultiplying the sum with (1/N). Then both sides
of (18) turns out to be νavg(i).
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Theorem 1 The estimate of pseudo-innovations {ν̂n(i)}i≥0, at
agent n, is asymptotically unbiased

lim
i→∞

E[ν̂n(i)− νavg(i)] = 0, 1 ≤ n ≤ N (19)

Proof Taking expectations on both sides of (15),

E[ν̂(i+ 1)] = E[ν̂(i)] + (E[ν(i+ 1)]− CE[ν̂(i)]) (20)

Taking expectations on both sides of (18) and using (17)

E[ν(i+ 1)] = (IN ⊗G−1)DHE[1N ⊗ νavg(i)] (21)

Note that (W ⊗ IM )(1N ⊗ νavg(i)) = 1N ⊗ νavg(i). We choose
C = (IN ⊗G−1)DH . Subtracting E[1N ⊗ νavg(i+ 1)] from both
sides of (20) and using (14) and (21),

E[ν̂(i+ 1)− 1N ⊗ νavg(i+ 1)]

= (IMN − C) (W ⊗ IM )E[ν̂(i)− 1N ⊗ νavg(i)]

Since C is a positive semi-definite matrix, ‖IMN − C‖ ≤ 1 and
since W is a stochastic matrix, ‖W ⊗ IM‖ = ‖W‖ < 1.
Taking norm and continuing recursion in the previous equation,

‖E[ν̂(i+ 1)− 1N ⊗ νavg(i+ 1)]‖

≤

(
i∏

j=i0

‖IMN − C‖‖(W ⊗ IM )‖

)
‖E[ν̂(i0)− 1N ⊗ νavg(i0)]‖

Taking limit, lim
i→∞

‖E[ν̂(i+ 1)− 1N ⊗ νavg(i+ 1)]‖ = 0.

We have proved that the pseudo-innovations estimate at each agent is
asymptotically unbiased to the average of pseudo-innovations of all
the agents, which will be used to prove that the distributed estimator
tracks the centralized estimator. Before going to those results, we
define the averaged estimator {xavg(i)} in (22) and the centralized
estimator {u(i)} in (23).

xavg(i) =
1

N

N∑
n=1

xn(i) =
1

N
(1N ⊗ IM )Tx(i) (22)

u(i+1) = A

(
u(i)+

1

N
Kc

N∑
n=1

(
HT

n zn(i)−HT
nHnu(i)

))
(23)

We first derive the conditions under which the estimates at each agent
{xn(i)} converge to the averaged estimate {xavg(i)}. Then we will
show that the averaged estimate converges to the centralized estimate
{u(i)}. The study of these two convergence properties results in the
following two theorems.

Theorem 2 The estimates of each agent {xn(i)} is asymptotically
unbiased to the averaged estimates {xavg(i)},

lim
i→∞

E[xn(i)− xavg(i)] = 0, 1 ≤ n ≤ N (24)

Proof Let PNM = 1
N

(1N ⊗ IM )(1N ⊗ IM )T and note that
PNM x(i) = 1N ⊗ xavg(i). Define the process {yavg(i)}:

yavg(i) = x(i)− 1N ⊗ xavg(i) (25)

yavg(i+ 1) = (IN ⊗A)

((
INM − β(L⊗ IM )

)(
INM

− PNM

)
x(i) +K(i)

(
INM − PNM

)
ν̂(i)

)
= (IN ⊗A)

((
INM − β(L⊗ IM )

)
yavg(i)

+ K(i)
(
ν̂(i)− 1N ⊗ νavg(i)

))
Taking expectations on both sides,
E[yavg(i+ 1)] = (IN ⊗A)

(
INM − β(L⊗ IM )

)
E[yavg(i)]

. + (IN ⊗A)K(i)E[ν̂(i)− 1N ⊗ νavg(i)].
From (19), it is evident that there exists a sufficiently large i0 > 0,
such that ∀i > i0, E[ν̂(i)− 1N ⊗ νavg(i)] = 0 and

E[yavg(i+ 1)] = (IN ⊗A)
(
INM − β(L⊗ IM )

)
E[yavg(i)].

Taking norm on both sides and continuing the recursion, we have

‖E[yavg(i+ 1)]‖ ≤ ai−i0‖INM − β(L⊗ IM )‖i−i0‖E[yavg(i0)]‖

By assumption (6), there exist β such that a‖INM − β(L ⊗
IM )‖ < 1. Optimal choice of β is discussed in Section 5. Taking
limit in the above inequality, limi→∞ ‖E[yavg(i+ 1)]‖ = 0.

Theorem 3 The averaged estimate sequence {xavg(i)} is asymp-
totically unbiased to the centralized estimate sequence {u(i)},

lim
i→∞

E[u(i)− xavg(i)] = 0 (26)

Proof From the definition of xavg(i),
1N ⊗ xavg(i+ 1) = PNMx(i+ 1)

= (IN ⊗A)
(

(W ⊗ IM )
(
1N ⊗ xavg(i)

)
+ PNMK(i)ν̂(i)

)
Define the process {yc(i)}: yc(i) = 1N ⊗ xavg(i) − 1N ⊗ u(i).
Note that, (W ⊗ IM )(1N ⊗ u(i)) = 1N ⊗ u(i).

yc(i+1) = (IN ⊗A)

(
(W ⊗IM )

(
1N ⊗

(
xavg(i)−u(i)

))
+K(i)

×PNM ν̂(i)− 1
N

(IN⊗Kc)
(

1N⊗
∑N

n=1

(
HT

n zn(i)−HT
nHnu(i)

)))
The estimator gain matrix is designed such that as i → ∞,
Kn(i)→ Kc ∀n. Taking expectation on both sides

E[yc(i+ 1)] = (IN ⊗A)

(
(W ⊗ IM )E[yc(i)] +K(i)PNME[ν̂(i)]

− 1

N
K(i)

(
1N ⊗ E

[ N∑
n=1

(
HT

n zn(i)−HT
nHnu(i)

)]))

There exists some sufficiently large i0 > 0 such that ∀i > i0,
E[ν̂(i)] = E[1N ⊗ νavg(i)] by using (19)

E[yc(i+ 1)]

=(IN ⊗A)

(
(W ⊗ IM )E[yc(i)] +K(i)

(
PNME[1N ⊗ νavg(i)]

− 1N ⊗ E
[ 1

N

N∑
n=1

(
HT

n zn(i)−HT
nHnu(i)

)]))
=(IN ⊗A)(W ⊗ IM )

(
INM −K(i)(IN ⊗G)

)
E[yc(i)]
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Taking norm on both sides and continuing the recursion,

‖E[yc(i+ 1)]‖

≤
( i∏

i=i1

a.‖W‖‖INM −K(i)(IN ⊗G)‖
)
‖E[yc(i1)]‖

We know that ‖W‖ < 1. There exists some i1 ≥ i0 such that
∀i > i1,K(i) can be designed such that ‖INM−K(i)(1N⊗G)‖ <

1
a‖W‖ .
Thus taking limit, limi→∞ ‖E[yc(i+ 1)]‖ = 0.

We have shown that the distributed estimator is asymptotically
unbiased to the averaged estimator, which in turn asymptotically un-
biased to the centralized estimator. In [6], it is shown that given
any arbitrary linear dynamical system, the centralized estimator can
be designed such that it can track the system with bounded mean-
squared error. For fastest convergence as well as for large value of
a, the optimal value of the gain matrix is K∗c = G−1. Hence if we
choose Kn(i) such that as i → ∞, Kn(i) → G−1, then that will
be the optimal gain matrix for (16), which can track any arbitrary
dynamical system with bounded mean-squared error.

5. ESTIMATOR DESIGN

The topology of the network plays a significant role in the con-
vergence of the distributed estimation algorithm. The convergence
speed of the network is dependent on the parameter γ as defined in
(6) and the dynamics of the system (1) is dependent on a. The net-
work topology should be designed in such a way that there exists β
such that

a‖IMN − β(L⊗ IM )‖ = a‖IN − βL‖ < 1 (27)

where, ‖IN − βL‖ = max{1− βλ2(L), βλN (L)− 1} (28)
The parameter β that satisfies both (27) and (28) should lie in the
range:

a− 1

a.λ2(L)
≤ β ≤ a+ 1

a.λN (L)
(29)

Thus there exists a β satisfying (27) if and only if (6) is satisfied.
Since we have assumed that the network topology satisfies (6), there-
fore in the distributed estimation algorithm any β from the range (29)
will serve the purpose. The optimal β is β∗ = 2/(λ2(L) +λN (L)).

Now we will discuss about the design of the estimator gain ma-
trix Kn(i) at each agent n. The gain matrix at each agent n can be
initialized as follows:

Kn(0) = HT
nHn, Kn(0) = K

+
n (0) =

(
HT

nHn

)+

(30)

where F+ is the Moore-Penrose pseudo-inverse of the matrix F as
defined in [10]. The gain at each time index is updated as follows:

Kn(i+ 1) =
∑
l∈Nn

wnlKl(i); Kn(i+ 1) = K
+
n (i+ 1) (31)

Under the assumptions of the network topology, from equations (30)
and (31), it is evident that Kn(i) asymptotically converges to G.
Hence the estimator gain converges to:

lim
i→∞

Kn(i) = G−1, ∀n (32)

The gain matrix thus designed is optimal for the distributed estima-
tor. It is to be noted that all the gain terms can be pre-computed and
saved at each agent. This will reduce the computational complexity
while running the distributed algorithm.

Fig. 1. The expected value of norm-square of error is plotted with
time index i.

6. SIMULATION RESULTS

We simulated an unstable dynamical system of dimension M = 10.
The system matrix Wph is randomly generated. The norm of the
overall system matrix is 1.1667. The system is observed by a net-
work of N = 10 agents. We have considered Mn = 2, ∀n. The
agent network is taken to be a regular lattice graph with number of
nodes = 10 and neighborhood size = 2. The eigen-ratio of the graph
is γ = 0.0814. The values of γ and a conforms with the condition
(6) . In this simulation, we have chosen β = β∗ = 0.3135. The fusion
weight matrix is chosen to be W = I − β∗L.The estimator gain
matrix is pre-computed and saved at each agent following (30) and
(31).The Monte Carlo simulation plot is shown in Fig.1.

In Fig.1, the expected value of norm-square of error, or in other
terms, the trace of the error covariance matrix is plotted with time
for three different cases. The first one is the error between the dis-
tributed estimate x(i) and the system state vector θ(i). The second
one is the error between the distributed estimate x(i) and the central-
ized estimate u(i). The third one is the error between the centralized
estimate u(i) and the system state vector θ(i). From the plot, it is
evident that the distributed estimates converge to the centralized es-
timates with bounded mean-squared error. Also, both the distributed
and the centralized estimates converge to the system state vector with
bounded mean-squared error but, as expected, the performance of
the centralized estimator is better than the distributed estimator.

7. CONCLUSIONS

In this paper, we proposed a new class of distributed algorithm for
the estimation of a linear discrete-time dynamical system. We have
considered single time-scale update algorithm, i.e., between succes-
sive evolution of the system dynamics, the agents in the distributed
network can communicate among themselves only once. Here we
introduced a new term called pseudo-innovations. Our distributed
algorithm consists of two parts - consensus and estimate of global av-
erage of pseudo-innovations. We have shown that the estimator can
track any arbitrary dynamical system with bounded mean-squared
error. Our algorithm requires the eigen-ratio of the graph Lapla-
cian to be lower bounded by a function of spectral radius of system
matrix, where as in prior work the ability of designed estimators de-
pend on Network Tracking Capacity, which is a function of the graph
Laplacian and the system observation model.
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