
DISTRIBUTED ADAPTIVE EIGENVECTOR ESTIMATION OF THE SENSOR SIGNAL
COVARIANCE MATRIX IN A FULLY CONNECTED SENSOR NETWORK

Alexander Bertrand∗, Marc Moonen

KU Leuven - Dept. ESAT/SCD & iMinds Future Health Department
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

E-mail: alexander.bertrand@esat.kuleuven.be; marc.moonen@esat.kuleuven.be

ABSTRACT

In this paper, we describe a distributed adaptive (time-recursive) al-
gorithm to estimate and track the eigenvectors corresponding to the
Q largest or smallest eigenvalues of the global sensor signal covari-
ance matrix in a wireless sensor network (WSN). We only address
the case of fully connected (broadcast) networks, in which the nodes
broadcast compressed Q-dimensional sensor observations. It can be
shown that the algorithm converges to the desired eigenvectors with-
out explicitely constructing the global covariance matrix that actu-
ally defines them, i.e., without the need to centralize all the raw sen-
sor observations. The algorithm allows each node to estimate (a) the
node-specific entries of the global covariance matrix eigenvectors,
and (b) Q-dimensional observations of the full set of sensor obser-
vations projected onto the Q estimated eigenvectors. The theoretical
results are validated by means of numerical simulations.

Index Terms— Wireless sensor networks, distributed estima-
tion, distributed compression, distributed eigenvector estimation.

1. INTRODUCTION
The eigenvectors of a covariance matrix play a crucial role in several
algorithms and applications, including principal component analysis
(PCA), the Karhunen Loeve transform (KLT), steering vector esti-
mation, total least squares estimation and nullspace/subspace esti-
mation. In this paper, we consider a set of spatially distributed wire-
lessly connected sensor nodes where a node k collects observations
of a node-specific stochastic vector yk. Let y be the global vec-
tor in which all yk’s are stacked, then we aim to estimate and track
Q eigenvectors of the global covariance matrix corresponding to y.
In principle, this would require each node to transmit its raw sen-
sor observations to a central node or fusion center (FC), where the
global covariance matrix can be constructed, after which an eigen-
value decomposition (EVD) can be performed. However, transmit-
ting raw observations of the different yk’s to an FC may require too
much communication bandwidth (in particular if observations are
collected at a high sampling rate, as in audio or video applications).
Furthermore, if y has a large dimension, the global covariance ma-
trix may become too large to process in the FC.

To avoid these issues, we propose a distributed algorithm to es-
timate and track the Q eigenvectors without explicitely constructing

∗The work of A. Bertrand was supported by a Postdoctoral Fellowship of the Re-
search Foundation - Flanders (FWO). This work was carried out at the ESAT Laboratory
of KU Leuven, in the frame of KU Leuven Research Council CoE EF/05/006 ‘Optimiza-
tion in Engineering’ (OPTEC) and PFV/10/002 (OPTEC), Concerted Research Action
GOA-MaNet, the Belgian Programme on Interuniversity Attraction Poles initiated by
the Belgian Federal Science Policy Office IUAP P7/23, Research Project iMinds, and
Research Project FWO nr. G.0763.12 ‘Wireless acoustic sensor networks for extended
auditory communication’. The scientific responsibility is assumed by its authors.

the global covariance matrix that actually defines them, i.e., without
the need to gather all the sensor observations in an FC. The algorithm
is referred to as the distributed adaptive covariance matrix eigen-
vector estimation (DACMEE) algorithm. Instead of transmitting all
raw sensor observations to an FC, the DACMEE algorithm lets each
node broadcast Q-dimensional (compressed) observations to all the
other nodes in the network. The shared data actually corresponds to
the sensor observations projected onto the Q estimated eigenvectors
(which can then be used, e.g., for compression/decompression based
on PCA or KLT, once the DACMEE algorithm has converged). It
is noted that the fully connected network case is considered here
merely for the sake of an easy exposition, as a similar algorithm can
also be defined in partially connected networks (details omitted).

Relation to prior work: Two different cases are mainly consid-
ered in the literature where either (a) all the nodes collect observa-
tions of the full vector y, or (b) each node collects observations of
a node-specific subset of the entries of y (as it is the case in this
paper). Let Y denote an M × N observation matrix containing N
observations of an M -dimensional stochastic vector y, then (a) cor-
responds to the case where the columns of Y are distributed over the
different nodes, whereas in case (b), the rows of Y are distributed
over the nodes. The cases (a) and (b) are very different in nature and
are tackled in different ways.

Case (a) is addressed in [1–3] for ad hoc topologies and in [4]
for a fully connected topology. In [1], the global sample covariance
matrix is first computed by means of a consensus averaging (CA)
algorithm that exchanges M ×M matrices in each iteration, after
which each node can perform a local EVD. If only a subset of the
eigenvectors1 is desired, one can use distributed optimization tech-
niques in which onlyM -dimensional vectors are exchanged between
nodes [2,3]. In [4], a distributed QR decomposition is performed fol-
lowed by an EVD, in a fully connected network.

Case (b) is considered to be more challenging, as it requires to
capture the cross-correlation between observations in different node
pairs. This case is tackled in [5, 6] (only for the case of principal
eigenvectors), again by means of CA techniques. However, these al-
gorithms require nested loops where the inner loop performs many
CA iterations with a full reset for each outer loop iteration (and each
new observation of y), resulting in a relatively large communication
load since each node transmits more data than actually collected by
its sensors. Furthermore, this inner loop reset also hampers adaptive
or time-recursive implementations. Finally, it is noted that there ex-
ists other related work in the context of (b) (see, e.g., [7, 8]), which
however requires prior knowledge of the global covariance matrix,

1 [2, 3] focuses on the eigenvector corresponding to the smallest eigen-
value of the covariance matrix, but the algorithm is easily adapted to compute
the prinicipal eigenvectors.

4236978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

which is assumed to be unknown here.

2. PROBLEM STATEMENT
Consider a fully connected wireless broadcast sensor network with a
set of sensor nodes K = {1, . . . ,K}. Node k collects observations
of a complex-valued Mk-dimensional stochastic vector yk, which
is assumed to be (short-term2) stationary and ergodic. We define the
M -dimensional stochastic vector y as the stacked version of all yk’s,
where M =

∑
k∈KMk. The covariance matrix of y is defined as

Ryy = E{(y − E{y}) (y − E{y})H} (1)

where E{.} denotes the expected value operator and where the
superscript H denotes the conjugate transpose operator. With-
out loss of generality, we assume that y is zero-mean, hence,
Ryy = E{yyH}, which may require a mean subtraction pre-
processing step. Ergodicity of y implies that Ryy can be approxi-
mated from N observations as

Ryy ≈
1

N

N∑
t=1

y[t]y[t]H (2)

where y[t] is an observation of y at sample time t.
The eigenvalue decomposition (EVD) of Ryy is defined as

Ryy = UΣUH (3)

where Σ = diag(λ1, . . . , λK) is a real diagonal matrix with the
eigenvalues as its diagonal elements (sorted in decreasing order of
magnitude), and where the unitary matrix U contains the corre-
sponding eigenvectors in its columns. Let X̂ denote the M × Q
matrix which contains the firstQ principal eigenvectors of Ryy in its
columns, i.e., the eigenvectors corresponding to the Q largest eigen-
values:

X̂ = U

[
IQ

O(M−Q)×Q

]
(4)

where IQ denotes the Q × Q identity matrix and O(M−Q)×Q de-
notes the (M −Q)×Q all-zero matrix. The Q principal eigenvec-
tors in X̂ can be used in a context of principal component analysis
(PCA), to compute a rank-Q approximation of Ryy , or for compres-
sion/decompression of the observations of y (based on the KLT). It is
noted that, even though we focus here on the principal eigenvectors,
all results in this paper can be straighforwardly modified to compute
the last Q columns of U instead, i.e., the eigenvectors correspond-
ing to the Q smallest eigenvalues. The latter can be used for, e.g.,
nullspace tracking or for total least squares estimation [9].

To estimate and track X̂, all nodes may transmit their observa-
tions to an FC, where Ryy can be constructed and updated at regular
time intervals (e.g., based on (2) using the N most recent obser-
vations), followed by the computation of (3)-(4). However, if the
dimensions of the yk’s are large, transmitting all the raw observa-
tions to the FC requires a large communication bandwidth, and the
computation of (2) and (3)-(4) requires a significant computational
power at the FC.

3. THE DACMEE ALGORITHM IN FULLY-CONNECTED
NETWORKS

In this section, we present a distributed adaptive (time-recursive)
algorithm where each node is responsible for estimating a specific

2Since the algorithms envisaged in this paper are adaptive, short-term sta-
tionarity is sufficient.

part of X̂, and where the centralized (off-line) construction of the
full covariance matrix Ryy is avoided. The algorithm is referred
to as the distributed adaptive covariance matrix eigenvector estima-
tion (DACMEE) algorithm. In the DACMEE algorithm, each node
broadcasts only Q-dimensional (compressed) observations, which
significantly reduces the communication bandwidth if Q � Mk.

3.1. Preliminaries

The DACMEE algorithm is an iterative algorithm that updates the
M × Q matrix Xi, where i is the iteration index (i typically runs
N times slower than the sampling of the sensors, where N is chosen
large enough such that (2) is sufficiently accurate, see also Subsec-
tion 3.2). We define the block partitioning3

Xi =

 Xi
1

...
Xi

K

 (5)

where the Mk × Q block matrix Xi
k is updated by node k. The

general goal is that limi→∞Xi = X̂, by letting nodes exchange
compressed observations of their yk’s. To this end, the compression
matrix that is used in between iteration i and iteration i + 1 at node
k is chosen as Xi

k, hence the latter serves both as an estimation vari-
able and a compression matrix. The compressed versions of the yk’s
are denoted as

zi
k = Xi H

k yk (6)

and we define zi
−k as the stacked version of all the zi

q’s, ∀ q ∈
K\{k}, i.e., zi

−k = [zi T
1 . . . zi T

k−1 zi T
k+1 . . . zi T

K]T . Since the
network is fully connected, node k collects observations of the fol-
lowing stochastic vector

ỹi
k =

[
yk

zi
−k

]
(7)

with corresponding covariance matrix

Ri
ỹk ỹk

= E{ỹi
kỹi H

k } . (8)

For the sake of an easy notation, we define the matrix Ci
k that

allows to write ỹi
k as a function of the global y, i.e.,

ỹi
k = Ci H

k y (9)

with

Ci
k =

 OS
k
×Mk

IMk Ci
−k

O
Sk×Mk

 (10)

where

Ci
−k = Blockdiag

(
Xi

1, . . . ,X
i
k−1,OMk×Mk ,X

i
k+1, . . . ,X

i
K

)
(11)

and where Sk =
∑k−1

q=1
Mq and Sk =

∑K

q=k+1
Mq . It is noted

that
Ri

ỹk ỹk
= Ci H

k RyyCi
k . (12)

3Here, we assume that Q < Mk , ∀ k ∈ K. If there exists a k for which
Q ≥ Mk , node k should transmit uncompressed observations of yk to one
other node, which will then treat yk as part of its own observations.

4237

Similarly to (2), Ri
ỹk ỹk

can be estimated as

Ri
ỹk ỹk

≈ 1

N

N∑
t=1

ỹi
k[t]ỹi

k[t]H . (13)

For later purpose, we also define the Q×Q matrix

Di
k = Xi H

k Xi
k (14)

and its square-root factorization

Di
k = Li H

k Li
k (15)

where Li
k is a Q×Q matrix. It is noted that Li

k is not unique and it
can be computed by means of, e.g., a Cholesky factorization [10] or
an EVD. Finally, we define the block-diagonal matrices

Λi
k = Blockdiag

(
IMk ,L

i
1, . . . ,L

i
k−1,L

i
k+1, . . . ,L

i
K

)
(16)

and its inverse

Vi
k =

(
Λi

k

)−1
. (17)

3.2. Algorithm derivation

We define the objective function

J (X) = Tr
{
XHRyyX

}
(18)

where Tr{·} denotes the trace operator. Note that X̂ as defined in
(4) maximizes (18) under the orthogonality constraint XHX = I.
Consider the following alternating optimization (AO) procedure:

1. Set i← 0, q ← 1, and X0 as a random M ×Q matrix.

2. Choose Xi+1 as a solution of:

Xi+1 ∈ arg max
X

J (X) (19)

s.t. ·XHX = I (20)

· ∀ k ∈ K\{q} : Xk ∈ Range{Xi
k} (21)

where Xk is the k-th submatrix of X similarly defined as in
(5), and where Range{Xi

k} denotes the subspace spanned by
the columns of Xi

k.

3. i← i+ 1 and q ← (q mod K) + 1.

4. Return to step 2.

Each iteration of the AO procedure increases the objective function
J
(
Xi
)

in a monotonic fashion. Indeed, the constraint (21) changes
in each iteration, allowing to update a particular submatrix of X
freely (i.e., Xq), while constraining the other submatrices to preserve
their current column space. Despite the fact that this AO procedure
is a centralized procedure requiring the full covariance matrix Ryy ,
the particular form of the constraints (21) allows to execute it in a
distributed fashion, which is explained next.

Notice that solving (19)-(21) is equivalent to solving

X̃ ∈ arg max
X̃

Tr
{

X̃HRi
ỹq ỹq

X̃
}

(22)

s.t. X̃HCi H
q Ci

qX̃ = I (23)

and setting Xi+1 = Ci
qX̃. Using the substitutions X = Λi

qX̃ and
R

i
q = Vi H

q Ri
ỹq ỹq

Vi
q , and using the fact that Ci H

q Ci
q = Λi H

q Λi
q

Table 1. The DACMEE algorithm in a fully connected WSN.

1. Set i← 0, q ← 1, and initialize X0
k, ∀ k ∈ K, randomly.

2. Each node k ∈ K computes Di
k = Xi H

k Xi
k and its the square-

root factorization Di
k = Li H

k Li
k. The Q × Q matrix Li

k is then
broadcast to all other nodes.

3. Each node k ∈ K broadcasts N new compressed sensor signal
observations zi

k[iN + j] = Xi H
k yk[iN + j] (where j = 1 . . . N)

to all other nodes.

4. At node q:

• Estimate Ri
ỹq ỹq

with theN new observations of ỹi
q as in (13).

• Construct the block-diagonal matrix Λi
q as defined in (16) and

compute the inverse of each diagonal block to construct the
block-diagonal matrix Vi

q =
(
Λi

q

)−1
.

• Compute the Q principal eigenvectors X of the matrix R
i
q =

Vi H
q Ri

ỹq ỹq
Vi

q (the Q columns of X are sorted such that the
corresponding eigenvalues are decreasing).

• Set [
Xi+1

q

G−q

]
= Vi

qX (26)

Di+1
q = Xi+1 H

q Xi+1
q . (27)

• Compute the square-root factorization Di+1
q = Li+1 H

q Li+1
q .

• Broadcast Li+1
q and the matrix G−q to all the other nodes.

5. Let G−q =
[
GT

1 . . . GT
q−1 GT

q+1 . . . GT
K

]T
where each par-

tition consists of a Q×Q matrix. Each node k ∈ K\{q} updates

Li+1
k = Li

kGk (28)

Xi+1
k = Xi

kGk . (29)

6. i← i+ 1 and q ← (q mod K) + 1.

7. Return to step 3.

and Λi
qV

i
q = I, this is also equivalent to solving

X ∈ arg max
X

Tr
{

X
H

R
i
qX
}

(24)

s.t. X
H

X = I (25)

and setting Xi+1 = Ci
kVi

qX. Note that this optimization problem
can be solved by performing an EVD of R

i
q . Since Ri

ỹq ỹq
can be

estimated by node q based on (13), it can compute R
i
q and its EVD

(assuming Vi
q is known, which will require exchange of the Li

k’s
between the nodes). The result can then be used to update the global
Xi into Xi+1. The DACMEE algorithm, as described in Table 1,
iteratively performs these operations. As the DACMEE algorithm is
then equivalent to the AO procedure, it will also result in a mono-
tonic increase of Tr

{
XHRyyX

}
under the constraint XHX = I.

It is noted that, in contrast to the AO procedure, the DACMEE
algorithm is assumed to operate in an adaptive (time-recursive) con-
text, and therefore all nodes collect and broadcast new observations
in each iteration. The number of observations N that are collected

4238

and broadcast in between the iterations (step 3) is chosen such that
a sufficiently accurate estimate of Ri

ỹk ỹk
can be computed in step

4. Furthermore, since all nodes are assumed to act as a data sink for
the Q-dimensional observations of Xi Hy, the (compressed) obser-
vations of the zi

k’s are broadcast to all the nodes in the network, even
though only one node q actually uses this data to update its local Xi

q

in each iteration.
Remark I: It is noted that we have made two implicit assump-

tions to guarantee that the DACMEE algorithm in Table 1 is well-
defined (which are usually satisfied in practice):

1. The matrix Λi
q has full rank, ∀ i ∈ N, with q being the updat-

ing node in iteration i.

2. The Q + 1 largest eigenvalues of R
i
q have multiplicity 1,

where q is the updating node in iteration i.
This guarantees that Xi+1

q and G−q are well-defined, i.e., there ex-
ists a unique X in each iteration (up to a sign ambiguity). However,
it is noted that these assumptions are made merely for the sake of
an easy exposition, i.e., the degenerate case can easily be dealt with
under some minor modifications to the algorithm.

Remark II: The extra data exchange for the Li+1
q and G−q ma-

trices (step 5) is negligible compared to the intermediate exchange
of the KN (compressed) observations of the zi

k’s. This also holds if
the full matrix Xi were communicated to the other nodes (e.g., for
KLT-based compression/decompression).

3.3. Convergence and optimality results

In the previous subsection, it has been explained that the DACMEE
algorithm yields a monotonic increase of J (X) (under the constraint
XHX = I) and that J(X̂) is the corresponding maximum. How-
ever, this monotonic increase does not necessarily mean that the al-
gorithm converges, let alone, that it converges to X̂. Therefore, we
provide some stronger results on convergence and optimality4.

Theorem 3.1 (proof omitted) X∗ = limi→∞Xi exists, i.e., the
DACMEE algorithm converges (for any initialization point).

Note that X∗ is an equilibrium point of the DACMEE algorithm,
i.e., if Xi = X∗ then ∀ j ≥ i : Xj+1 = Xj . Although Theorem
3.1 does not make any statements about the optimality of X∗, we
can make a general statement about the set of equilibrium points:

Theorem 3.2 (proof omitted) Let X ∗ denote the set of all equilib-
rium points of the DACMEE algorithm. Every X∗ ∈ X ∗ can only
have eigenvectors of Ryy in its columns. Furthermore, X ∗ always
contains X̂, as defined in (4), which is the only stable equilibrium
point under the DACMEE updates.

It is noted that Theorem 3.2 does not guarantee that X ∗ is a sin-
gleton, i.e., that X̂ is the only equilibrium point. Nevertheless, it is
unlikely that multiple equilibria exist, since this requires existence
of an eigenvector that maximizes the objective function over K dif-
ferent constraint sets defined by (20)-(21), ∀ q ∈ K. Moreover, even
when such a suboptimal equilibrium point exists, it will be unsta-
ble. Due to inevitable estimation errors and numerical noise, we can
safely assume that -in practice- the DACMEE algorithm will diverge
from such an unstable equilibrium point. Since X̂ is the only sta-
ble equilibrium point, we can conclude that the DACMEE algorithm
converges to the Q principal eigenvectors of Ryy , i.e., X∞ = X̂.

4All theorems in this paper assume that the matrices Ri
ỹk ỹk

, ∀k ∈ K, are
estimated without errors. Small estimation errors may cause the algorithm to
randomly move within a small neighborhood of the optimal solution.

0 50 100 150
0

2

4

6

8

10

iteration

O
b
je
ct
iv
e
fu
n
ct
io
n

Objective function (averaged over MC runs)

Optimal value of objective function (averaged over MC runs)

0 50 100 150

10
−6

10
−4

10
−2

iterationm
ea
n
sq
u
a
re
d
er
ro
r
o
v
er

en
tr
ie
s
o
f
X

i

Median (Q=1)

Median (Q=3)

Median (Q=5)

25% and 75% percentiles (only for Q=1)

Q=1

Q=5

Q=3

Fig. 1. Convergence properties of the DACMEE algorithm.

4. SIMULATIONS

In this section, we provide Monte-Carlo (MC) simulations of the
DACMEE algorithm, and compare it with the centralized solution.
In each MC run, a new scenario is created with K = 10 nodes,
each collecting observations of a different 20-dimensional stochastic
vector yk, ∀ k ∈ Ks, where the observations of the stacked vector y
are generated as

y[t] = Ad[t] + n[t] (30)

where A is a deterministic 200 × 20 matrix (independent from t)
from which the entries are randomly drawn from a uniform distri-
bution over the interval [−0.5; 0.5], d[t] is an observation of a 20-
dimensional stochastic vector from which the entries are indepen-
dent and uniformly distributed over the interval [−0.5; 0.5] and n[t]
is an observation of a 200-dimensional stochastic vector from which
the entries are independent and uniformly distributed over the inter-
val [−

√
2/4;
√

2/4] (modelling spatially uncorrelated sensor noise).
The upper part of Fig. 1 shows the monotonic increase of the

objective function (18) over the different iterations of the DACMEE
algorithm for different values ofQ (averaged over 200 MC runs). We
observe that, after a sufficient number of iterations, the algorithm
always converges to the correct value. The bottom part of Fig. 1
shows the squared error over the entries of Xi compared to X̂, i.e.,

1

MQ
Tr
{(

Xi − X̂
)H (

Xi − X̂
)}

. (31)

The plot shows the median (50% percentile) over the 200 MC runs
for different values of Q. It is observed that Q has no significant
influence on the convergence speed of the algorithm. For the case of
Q = 1, the 25% and 75% percentile are also shown (the percentiles
for Q = 3 and Q = 5 are similar but omitted here).

5. CONCLUSIONS

We have described a distributed adaptive (time-recursive) algorithm
to estimate and track the eigenvectors corresponding to theQ largest
or smallest eigenvalues of the global sensor signal covariance matrix
in a fully connected sensor network. It has been demonstrated that
the eigenvectors can be computed without the need to gather all the
sensor observations in a fusion center. The theoretical results have
been validated by means of numerical simulations.

4239

6. REFERENCES

[1] S. Macua, P. Belanovic, and S. Zazo, “Consensus-based dis-
tributed principal component analysis in wireless sensor net-
works,” in International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC), june 2010, pp.
1 –5.

[2] A. Bertrand and M. Moonen, “Consensus-based distributed
total least squares estimation in ad hoc wireless sensor net-
works,” IEEE Trans. on Signal Processing, vol. 59, no. 5, pp.
2320–2330, May 2011.

[3] ——, “Low-complexity distributed total least squares estima-
tion in ad hoc sensor networks,” IEEE Transactions on Signal
Processing, vol. 60, pp. 4321–4333, Aug. 2012.

[4] Z.-J. Bai, R. H. Chan, and F. T. Luk, “Principal component
analysis for distributed data sets with updating,” in Proceed-
ings of the 6th international conference on Advanced Parallel
Processing Technologies, ser. APPT’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 471–483.

[5] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized es-
timation of the sample covariance,” in Asilomar Conference on
Signals, Systems and Computers, oct. 2008, pp. 1722 –1726.

[6] L. Li, X. Li, A. Scaglione, and J. Manton, “Decentralized
subspace tracking via gossiping,” in Distributed Computing
in Sensor Systems, ser. Lecture Notes in Computer Science,
R. Rajaraman, T. Moscibroda, A. Dunkels, and A. Scaglione,
Eds. Springer Berlin Heidelberg, 2010, vol. 6131, pp. 130–
143.

[7] M. Gastpar, P. Dragotti, and M. Vetterli, “The distributed
Karhunen-Loève transform,” in IEEE Workshop on Multime-
dia Signal Processing, dec. 2002, pp. 57 – 60.

[8] Y.-A. Le Borgne, S. Raybaud, and G. Bontempi, “Distributed
principal component analysis for wireless sensor networks,”
Sensors, vol. 8, no. 8, pp. 4821–4850, 2008.

[9] I. Markovsky and S. Van Huffel, “Overview of total least-
squares methods,” Signal Processing, vol. 87, no. 10, pp. 2283
– 2302, 2007, special Section: Total Least Squares and Errors-
in-Variables Modeling.

[10] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.
Baltimore: The Johns Hopkins University Press, 1996.

4240

