
KEEP BALLOTS SECRET:
ON THE FUTILITY OF SOCIAL LEARNING IN DECISION MAKING BY VOTING

Joong Bum Rhim and Vivek K Goyal

Research Laboratory of Electronics
Massachusetts Institute of Technology

ABSTRACT
We show that social learning is not useful in a model of team binary
decision making by voting, where each vote carries equal weight.
Specifically, we consider Bayesian binary hypothesis testing where
agents have any conditionally-independent observation distribution
and their local decisions are fused by any L-out-of-N fusion rule.
The agents make local decisions sequentially, with each allowed to
use its own private signal and all precedent local decisions. Though
social learning generally occurs in that precedent local decisions af-
fect an agent’s belief, optimal team performance is obtained when all
precedent local decisions are ignored. Thus, social learning is futile,
and secret ballots are optimal. This conclusion contrasts with typical
studies of social learning because we include a fusion center rather
than concentrating on the performance of the latest-acting agents.

Index Terms— Bayesian hypothesis testing, distributed detec-
tion and fusion, sequential decision making, social learning, social
networks

1. INTRODUCTION

Consider a set of agents making a decision collectively by voting,
with each agent having equal influence. It would seem that the best
collective decisions would come from each agent having as much in-
formation as possible. For example, if the voting is sequential rather
than simultaneous, it would seem that the collective decision would
be improved by later-acting agents having knowledge of the votes
of the earlier-acting agents. Using the methods of signal processing
to analyze a simple model, we show that this is not the case. In a
social or political context, this provides a mathematical justification
for the use of secret ballots, independent of any other merits, such
as avoiding bribery, intimidation, or insincere voting. To be clear,
though, our interest is in binary decision making under uncertainty,
not voting to express individual preferences.

In contemporary popular culture, the advantage of (properly) ag-
gregating opinions of many (reasonably diverse and independent)
agents is known as “the wisdom of crowds” [1]. In statistical signal
processing, this is nothing more than a reduction in effective noise
level from averaging or aggregating. Suppose private signals ob-
served by decision-making agents are not perfectly informative due
to noise. If N agents share their private signals, assumed condi-
tionally independent and identically distributed (iid) given the un-
known variable of interest, then the sharing effectively increases the
signal-to-noise ratio (SNR) by a factor of N . Even if a communica-
tion capacity limit restricts the amount of shared information, shar-
ing still helps the detection system work much better than a single-
agent system. For example, in systems where agents with Gaussian
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noise-corrupted observations share 1-bit signals that are fused with
the MAJORITY fusion rule, the effective SNR is asymptotically in-
creased by a factor of 2N/π [2].

In this paper, we consider a team1 of agents that together make a
binary decision (between 0 and 1) by voting. Binary decisions often
made by teams include whether to make a large purchase, whether
to hire a job applicant, and whether to convict a defendant; the final
example highlights that aggregation by voting, with equal weight to
each vote, does not imply the use of majority rule. The agents have
their own private signals and make local decisions in some preor-
dained order. Because of this ordering, we refer to the agents as a
sequence. The agents form a distributed detection and data fusion
system because their local decisions are fused to reach a global de-
cision, and only the global decision determines their performance.

Now assume that the agents can watch other agents’ choices as
public signals so that they can use the predecessors’ decisions in de-
cision making. The framework of sequential decision making was
independently introduced in [5] and [6]. A key concept in these
works is herding. A herd of agents takes place when all agents be-
yond some index have the same local decision. Both works found
that a herd of agents making the incorrect decision might arise with
positive probability when private signals are bounded; this is a dis-
appointing occurrence since the optimal aggregation of private sig-
nals would result in vanishing error probability. Subsequently, [7]
showed that agents will asymptotically settle on the correct decision
if private signals are unbounded. Recently, [8] extends the result to
general network topologies where each agent can observe decisions
made by its neighbors instead of all previous agents.

This work contrasts from previous works in two key ways: we
consider an arbitrary but finite number of agentsN ; and we consider
any symmetric fusion of the local decisions (i.e., voting by an L-
out-of-N rule2). Because the number of agents is finite, presence or
absence of herding is not central to our study; a herd of agents might
arise and yet form a small fraction of the N total agents. Also, the
fusion by voting makes an early-acting agent important not only for
its influence on later-acting agents but also because its vote counts.

As the first to study this scenario, we ask whether it is beneficial
for the agents not only to send their local decisions to the fusion cen-
ter but also to share among themselves. The agents in this work do
Bayesian reasoning, and this has been shown to be a good approxi-
mation to human behavior [9–13].

The public signals raise two changes to the model: the belief
update that is standard in social learning and a fusion rule update

1The term team implies that the agents have no conflicts of interest, which
here translates to agreement in the relative importance of false alarms and
missed detections [3]. Conflicts among agents would make their collective
decisions worse [4]; we concentrate on understanding their ideal behavior.

2In the notation of L-out-of-N rule, N denotes the number of agents and
L denotes the minimum number of 1 votes for 1 to be the global decision.
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that has not appeared previously in the context of social learning.
Each agent will update its belief about the true state based on

the public signals (in a Bayesian setting) and design a better deci-
sion rule. The previous decisions reflecting the private signals of the
precedent agents contain information that the following agents do
not have. If an agent observes that most predecessors have chosen 1,
then the agent will have a stronger belief on 1 and a weaker belief on
0. Hence, the update of belief is a positive feedback that encourages
an agent to follow the precedents.

Each agent will adjust the fusion rule based on the public sig-
nals. For example, if the first agent has chosen 0, then the L-out-of-
N fusion rule changes to the L-out-of-(N−1) rule for the remaining
agents. And if the second agent has subsequently chosen 1, then the
fusion rule becomes the (L−1)-out-of-(N−2) rule, etc. Thus, the
previous decisions put a following agent in a different position; if
most previous agents have chosen 1, then a few more votes for 1 will
determine the global decision as 1. This fact makes the agent be-
come more careful to choose 1. The evolution of the fusion rule is a
negative feedback that discourages an agent to follow the precedents.

Our mathematical analysis shows that those positive and nega-
tive effects are exactly canceled out and that the optimal decision
rules with public signals are equal to those without public signals. It
implies that observing public signals is practically useless.

Section 2 describes our model formally. Section 3 provides re-
sults for two agents and Section 4 extends the results for an arbitrary
number of agents. Section 5 concludes the paper.

2. THE FORMAL MODEL

A team of N agents—Alexis, Blake, ..., Norah—performs a binary
hypothesis test for an object. The agents are aware of the prior prob-
abilities of the object in state H = 0 and in state H = 1, which are
denoted by p0 = P{H = 0} and p1 = P{H = 1} = 1 − p0. The
agents individually receive private signals about the state and per-
form tests to make their own binary decisions Ĥi. They are a team
that shares a common cost function and a common goal to minimize
the cost of global decisions. The cost for a false alarm is c10 and the
cost for a missed detection is c01. Thus, for the L-out-of-N fusion
rule, the average cost (i.e., Bayes risk) is given as follows:

R = c10p0P{
∑N

i=1 Ĥi ≥ L |H = 0}

+ c01p1P{
∑N

i=1 Ĥi ≤ L− 1 |H = 1}. (1)

The private signals Yi are conditionally iid given the state H ,
with the likelihood function fYi|H . In other words, all agents ob-
serve private signals of equal quality. Bayesian agents use a like-
lihood ratio test (LRT) as the optimal decision rule, which chooses
Ĥi = 1 if the ratio fYi|H(yi | 1)/fYi|H(yi | 0) is greater than a cer-
tain threshold [14, 15]. We assume that the likelihood ratio is an
increasing function of yi so that the LRT is simplified to a decision
rule with a decision threshold λi:

yi

Ĥi(yi)=1

R
Ĥi(yi)=0

λi. (2)

We will compare the optimal decision thresholds in the follow-
ing two scenarios:

1) A common distributed detection system: Agents only observe
private signals and make local decisions in parallel without
knowing other agents’ decisions. Then their decisions are
fused by a specificL-out-of-N rule to make a global decision.
Alternatively, we call this scenario parallel decision making.

2) A distributed detection system combined with sequential de-
cision making: Agents observe private signals and sequen-
tially make local decisions. Before each agent makes a deci-
sion, the agent observes precedents. Then their decisions are
fused by a specificL-out-of-N rule to make a global decision.

Our notations for decision thresholds are distinguished in the two
scenarios: λ in the first scenario and ρ in the second scenario.

In Scenario 1, we will say that the optimal decision thresholds
are identical, i.e., λ∗1 = · · · = λ∗N for the following reasons: Us-
ing identical decision thresholds is asymptotically optimum for the
binary hypothesis testing problem [16]. Furthermore, by numeri-
cal experiments, it turns out that constraining to identical decision
rules causes little or no loss of performance for finite N and the
corresponding optimal fusion rule has the L-out-of-N form [17].
Our numerical experiments (not reported here) for fixed fusion rules
and conditionally iid private signals show that the optimal decision
thresholds are in fact identical at least for any N ≤ 7 in multiple
cases with such as Gaussian and exponential likelihood functions.

We use P I
e and P II

e as notations for probabilities of Type I (false
alarm) and Type II (missed detection) errors. We use a subscript
index to indicate a specific agent. For example, error probabilities of
Alexis are written as

P I
e,1 = P{Ĥ1 = 1 |H = 0}, P II

e,1 = P{Ĥ1 = 0 |H = 1}. (3)

Since all agents have equally good private signals, their error proba-
bilities are the same as (3) in the parallel decision-making scenario.

In Scenario 2, the agents sequentially make hard decisions:
Alexis first makes a decision Ĥ1, Blake next makes a decision Ĥ2,
and so on. Predecessors’ decisions, which we call public signals,
may cause different error probabilities by following agents. In this
case, we use superscript notation to specify the public signals. For
example, P I0

e,2 denotes the probability of Type I error of Blake upon
observing Ĥ1 = 0 and P II01

e,3 denotes the probability of Type II error
of Chuck (the third agent) upon observing Ĥ1 = 0 and Ĥ2 = 1. We
sometimes use a notation like P I0

e,3 that specifies Alexis’s decision
as Ĥ1 = 0 but does not specify Blake’s decision Ĥ2.

Once the error probabilities of all agents are computed, the con-
ditional probabilities of the global decision being in error are given
from the L-out-of-N fusion rule:

P I
E = pĤ|H(1 | 0) =

N∑
n=L

∑
I⊆[N]
|I|=n

∏
i∈I

P I
e,i

∏
j∈[N ]\I

(
1− P I

e,j

)
,

P II
E = pĤ|H(0 | 1) =

N∑
n=N−L+1

∑
I⊆[N]
|I|=n

∏
i∈I

P II
e,i

∏
j∈[N ]\I

(
1− P II

e,j

)
,

where [N ] denotes the set {1, 2, . . . , N}. The Bayes risk is based
on the team decision:

R = c10p0P
I
E + c01p1P

II
E . (4)

3. TWO AGENTS

Let us consider the simplest case for distributed detection, which is
N = 2. We will compare two cases, which are depicted in Fig. 1.
We start from an assumption that Alexis does not change her strategy
whether the agents observe public signals or not. The assumption
comes from an intuition that she is the first agent to make a decision
and does not observe any previous decisions in both scenarios.
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Ĥ

Chuck
H1, H2
ˆ ˆ

fY |H3

Y3

H3
ˆ

H1
ˆ

H1
ˆ

Alexis Blake

H

fY  |H fY  |H
Y1 Y2

1 2

Fusion

H2
ˆ

Ĥ
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Fig. 1. Two agents and a fusion center. (a) Parallel decision making.
(b) Sequential decision making.

Theorem 1. Suppose that sharing previous decisions does not
change Alexis’s decision rule. Then, for N = 2 and any L-out-
of-N fusion rule, the existence of public signals does not affect the
decision strategies of agents.

Proof. There are only two meaningful fusion rules when N = 2:
1-out-of-2 (OR) rule and 2-out-of-2 (AND) rule. Let’s consider the
OR rule first.

In the parallel decision-making scenario, the Bayes risk is given
by

Rp = c10p0
(
P I
e,1 + P I

e,2 − P I
e,1P

I
e,2

)
+ c01p1P

II
e,1P

II
e,2, (5)

where Alexis’s error probabilities P I
e,1 and P II

e,1 are governed by her
decision threshold λ1 and Blake’s P I

e,2 and P II
e,2 are governed by his

decision threshold λ2. Their optimal decision thresholds λ∗1 and λ∗2
are the minimizer of (5).

In the sequential decision-making scenario, Blake observes
Alexis’s decision Ĥ1. Thus, we take care of Alexis’s decision thresh-
old, ρ1, and Blake’s decision threshold upon observing Ĥ1 = 0,
which is denoted by ρ0

2 , only because his decision does not matter
when Ĥ1 = 1. The Bayes risk is given by

Rs = c10p0
(
P I
e,1 +

(
1− P I

e,1

)
P I0
e,2

)
+ c01p1P

II
e,1P

II0
e,2 , (6)

which is exactly the same formula as (5). Therefore, the optimal
decision thresholds would be the same as those in the first case:

ρ∗1 = λ∗1, ρ0∗
2 = λ∗2, (7)

and ρ∗1 = ρ0∗
2 because λ∗1 = λ∗2. Since we do not care about Blake’s

decision threshold when Ĥ1 = 1, ρ1
2 , we can set ρ1∗

2 = ρ0∗
2 , too.

Therefore, Alexis and Blake’s optimal decision thresholds are not
affected by the existence and the value of the public signal Ĥ1.

The same statement for the AND fusion rule can also be proven
in a similar way.

4. N AGENTS

In Section 3, we have shown that knowing Alexis’s decision practi-
cally does not change Blake’s optimal strategies for N = 2 and any
L-out-of-N fusion rule. Now let us expand the problem to a general
N -agent problem by mathematical induction.

Theorem 2. Suppose that sharing previous decisions does not
change Alexis’s decision rule (i.e., ρ∗1 = λ∗1). If the existence of the
public signals does not affect optimal decision thresholds of a team
of N agents for a specific N and any K-out-of-N fusion rule, then
the existence of the public signals also does not affect optimal deci-
sion thresholds of a team of N+1 agents and any L-out-of-(N+1)
fusion rule.

Proof. First, consider the parallel decision-making scenario with
N+1 agents. Since a decision of an agent is critical only if the other
N local decisions are L−1 ones and N−L+1 zeros, the optimal
decision threshold λ∗ is the solution to3

fY |H(λ | 1)
fY |H(λ | 0) =

c10p0
(

N
L−1

) (
P I
e

)L−1 (
1− P I

e

)N−L+1

c01p1
(

N
N−L+1

)
(P II

e )N−L+1 (1− P II
e )L−1

=
c10p0

(
P I
e

)L−1 (
1− P I

e

)N−L+1

c01p1 (P II
e )N−L+1 (1− P II

e )L−1
, (8)

where we embed the idea that the optimal decision thresholds of all
agents are identical.

Next, consider the sequential decision-making scenario when
the agents observe previous decisions. The Bayes risk is given by

Rs = c10p0
(
1− P I

e,1

)
P
{∑N+1

n=2 Ĥn ≥ L | Ĥ1 = H = 0
}

+ c10p0P
I
e,1P

{∑N+1
n=2 Ĥn ≥ L− 1 | Ĥ1 = 1, H = 0

}
+ c01p1P

II
e,1P

{∑N+1
n=2 Ĥn ≤ L− 1 | Ĥ1 = 0, H = 1

}
+ c01p1

(
1− P II

e,1

)
P

{
N+1∑
n=2

Ĥn ≤ L− 2 | Ĥ1 = H = 1

}
, R0

(
p0(1− P I

e,1)+p1P
II
e,1

)
+R1

(
p0P

I
e,1+p1(1− P

II
e,1)
)
,

(9)

where R0 and R1 are specified in (11) and (12) and we define

q0 ,
p0
(
1− P I

e,1

)
p0
(
1− P I

e,1

)
+ p1P

II
e,1

= P{H = 0 | Ĥ1 = 0},

q1 ,
p0P

I
e,1

p0P
I
e,1 + p1

(
1− P II

e,1

) = P{H = 0 | Ĥ1 = 1}. (10)

When the agents 2, . . . , N+1 observe that Ĥ1 = 0, their opti-
mal decision strategy is to minimize the term R0 from (9):

R0 = c10q0P
{∑N+1

n=2 Ĥ
0
n ≥ L |H = 0

}
+ c01(1− q0)P

{∑N+1
n=2 Ĥ

0
n ≤ L− 1 |H = 1

}
, (11)

where the condition Ĥ1 = 0 is intended in the term Ĥ0
n. Please note

that R0 is the same as the Bayes risk of N agents when the prior
probability is q0 and fusion is by the L-out-of-N rule. It implies
that the optimal decision thresholds of Agents 2, . . . , N+1 are the
same as those of N agents with prior probability q0 and the L-out-
of-N fusion rule.

Likewise, when the agents 2, . . . , N+1 observe that Ĥ1 = 1,
their optimal decision strategy is to minimize the term R1 from (9):

R1 = c10q1P
{∑N+1

n=2 Ĥ
1
n ≥ L− 1 |H = 0

}
+ c01(1− q1)P

{∑N+1
n=2 Ĥ

1
n ≤ L− 2 |H = 1

}
. (12)

3Please see [18] for a detailed description of how (8) is derived.
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Optimal 
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ρ2, ..., ρN+1

0 0

1 1

Fig. 2. An (N+1)-agent problem is divided into two N -agent prob-
lems depending on Alexis’s decision Ĥ1.

Their optimal decision thresholds are the same as those of N agents
with prior probability q1 and (L−1)-out-of-N fusion rule. Fig. 2 de-
picts the evolution of the problem corresponding to Alexis’s decision
Ĥ1.

Let us find the optimal thresholds ρ0∗
2 , . . . , ρ

0∗
N+1 in Problem B0

in Fig. 2. In fact, the N agents in Problem B0 also observe public
signals. However, because of the condition that the existence of the
public signals does not affect optimal decision thresholds of a team
ofN agents for anyK-out-of-N fusion rule, we can find the optimal
thresholds as if the agents do not observe the public signals. Since a
decision of an agent is critical only if the other N−1 local decisions
are L−1 ones and N−L zeros, the optimal decision threshold ρ0∗

is the solution to

fY |H(ρ0 | 1)
fY |H(ρ0 | 0) =

c10q0
(
N−1
L−1

) (
P I0
e

)L−1 (
1−P I0

e

)N−L

c01(1−q0)
(
N−1
N−L

) (
P II0
e

)N−L (
1−P II0

e

)L−1

=
c10p0

(
1−P I

e

) (
P I0
e

)L−1 (
1−P I0

e

)N−L

c01p1P II
e

(
P II0
e

)N−L (
1−P II0

e

)L−1
, (13)

where q0 is replaced by (10). Due to the assumption that ρ∗1 = λ∗1,
P I
e and P II

e in (13) are the same as P I
e and P II

e in (8).
Comparing (13) to (8), we can find that they have the same solu-

tions, i.e., ρ0∗
i = λ∗i . Therefore, the agents should not change their

decision thresholds after observing Ĥ1 = 0.
We can also find the optimal thresholds ρ1∗

2 , . . . , ρ
1∗
N+1 in Prob-

lem B1 in Fig. 2 by looking at the N -agent problem without public
signals:

fY |H(ρ1 | 1)
fY |H(ρ1 | 0) =

c10q1
(
N−1
L−2

) (
P I1
e

)L−2 (
1−P I1

e

)N−L+1

c01(1−q1)
(

N−1
N−L+1

) (
P II1
e

)N−L+1 (
1−P II1

e

)L−2

=
c10p0P

I
e

(
P I1
e

)L−2 (
1−P I1

e

)N−L+1

c01p1 (1−P II
e )
(
P II1
e

)N−L+1 (
1−P II1

e

)L−2
.

(14)

Again, due to the assumption that ρ∗1 = λ∗1, P I
e and P II

e in (14) are
the same as P I

e and P II
e in (8). We reach to the same statement that

the two equations have the same solutions, i.e., ρ1∗
i = λ∗i , by com-

paring (14) to (8). Thus, the agents should not change their decision
thresholds after observing Ĥ1 = 1.

Consequently, for a team of N + 1 agents and any L-out-of-
(N+1) rule, their optimal decision thresholds are the same whether
they observe previous decisions or not.

We want to clarify the term belief in Fig. 2, which is distin-
guished from prior probability. The prior probability is fixed as p0
and known to all agents. The belief is how probable the agents think
H = 0 is. The belief changes as agents observe previous decisions.
The above proof does not mean that the prior probability is changed
after the agents observe Alexis’s decision. It is saying that the prob-
lem of determining optimal thresholds upon observing Alexis’s de-
cision is equivalent to Problem B0 or B1 corresponding to Ĥ1.

The essence of this proof is to show that the effect of new fusion
rules, L-out-of-N and (L−1)-out-of-N , exactly cancels out the ef-
fect of new beliefs q0 and q1 . It is observed when we compare (13)
and (14) to (8). From an overall standpoint, the public signals neither
harm nor help the decision-making task.

Corollary 3. Suppose that sharing previous decisions does not
change Alexis’s decision rule (i.e., ρ∗1 = λ∗1). For any N and L-out-
of-N fusion rule, the existence of the public signals does not affect
optimal decision thresholds of a team of N agents.

Proof. Use mathematical induction with Theorems 1 and 2.

Corollary 3 is trivial for N = 1 and is proven by Theorem 1 for
N = 2. ForN ≥ 3, we can iteratively break down the problem until
we have 2N−2 two-agent problems like in Fig. 2. The backward
process from the leaves (two-agent problems) to the root (N -agent
problem) will demonstrate Corollary 3.

Corollary 3 only refers to the optimal decision thresholds. How-
ever, it implies that team’s performance (i.e. Bayes risk) is not af-
fected by the public signals. This is because decision thresholds
determine the probabilities of errors and, thus, the Bayes risk.

5. CONCLUSION

We have discussed sequential decision making in a distributed detec-
tion and fusion system by a team of agents. The system is intention-
ally simple for the purpose of understanding fundamentals; agents
share a cost function and know the prior probability, and their obser-
vations are conditionally iid. It would be intuitively desired to have
as much information as possible when performing a hypothesis test.
However, our study has revealed that it is useless to observe other
agents’ decisions in this system. The agents just need to individually
make the best decisions.

This result is justified by symmetries throughout our model. The
first symmetry is the equal quality of private signals due to the iden-
tical likelihood functions. The second symmetry is the equal (1-bit)
votes that agents have. The third symmetry is the equal weights of
the votes implied by the L-out-of-N fusion rule.

One interpretation of the main result is as follows: Each agent
sends 1 bit of information about its private signal to the fusion cen-
ter. If Blake refers to Alexis’s decision, then the fusion center effec-
tively receives less than 1 bit of information about Blake’s private
signal from him. Therefore, in order to prevent such an efficiency
loss, Blake should make a reasonable decision only based on his
own private signal. Hence, a secret ballot encourages optimal de-
cision making, since it is not good for the agents to be affected by
public signals.

This result is obtained under an assumption that Alexis uses the
same decision thresholds in both scenarios, and the assumption is
not unreasonable. The assumption is trivially true for N = 1. It is
also true for N = 2; our proof of Theorem 1 even does not use this
assumption. In addition, we have confirmed that it is true at least for
anyN ≤ 9 by numerical experiments. This assumption heuristically
seems true, and our future work is to verify it for arbitrary N .
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