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ABSTRACT

This paper investigates moving target localization by the biased
time-of-arrivals (TOAs), where an extracted TOA is biased by the
unknown Doppler of the target. The phenomenon applies to radar
and sonar systems that employ Doppler tolerant waveforms. While
in principle those would allow the estimation of both position and
velocity using position-only measurements, we unfortunately find
that the Fisher information matrix is ill-conditioned. However, a
Quasi-maximum likelihood estimator based on the misspecified
model is suggested, and its performance is analyzed.

Index Terms— Localization, estimation, TOA, measurement
bias, maximum likelihood, misspecified model.

1. INTRODUCTION

A distributed system enables the localization of a target of interest
with spatially complementary observations. Such system can be ei-
ther passive or active; a typical realization for the former is a low-
cost sensor network, while an example for the latter can be a multi-
static radar or sonar system. Current available measurements include
received signal strength [5], time-of-arrival (TOA) or range [3, 8, 9],
time-difference-of-arrivals (TDOA) [4], angle-of-arrival (AOA) [6],
and so forth. They can be individually or cooperatively utilized in
target localization. In this paper, we are interested in localizing a
single moving target with distributed TOAs.

TOA based localization has flourished with the development of
wireless techniques, and it requires the knowledge of propagation
time for spatially distinct transmitter-target-receiver paths [1]. Math-
ematically, localization in two dimensions involves inference of the
intersection of multiple fuzzy TOA circles and ellipses, while that
in three dimensions deals with multiple measurement balls and el-
lipsoids [7]. Many interesting works exist in the literature. They
concentrate either on efficient localization algorithm design [1] or
on dealing with challenging observation circumstances such as TOA
origin uncertainty [7].

Many existing works assume that each measurement is from a
stationary target and is unbiased. However, an extracted TOA can
be biased by the Doppler of a target. Physically, many radar and
sonar systems adopt Doppler tolerant waveforms (DTWs) to ascer-
tain propagation delays from a moving target [3, 8,9]. Those wave-
forms assure certain degree of robustness during acquisition of a
moving target; however, the extracted TOA will be biased by the
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Fig. 1. An intuitive illustration of delay bias with a DTW. If the
Doppler of a target is nonzero, the extracted delay from the zero
Doppler axis (i.e., the maximum amplitude for a noise-free matched
filter matched to zero-Doppler) will be biased by the Doppler. The
delay bias is a function of Doppler and the ambiguity function ridge,
which depends on system parameters.

Doppler as illustrated in Fig. 1. In the paper, we consider the local-
ization of a moving target with Doppler biased TOAs, and our contri-
butions are two-fold: /) we show that the Fisher information matrix
of this problem is ill-conditioned, and thus the Cramér-Rao lower
bound (CRLB) and maximum likelihood (ML) method are both in-
valid [10]. 2) A Quasi-ML estimator with a misspecified model is
suggested, and its asymptotic properties are discussed.

The rest of this paper is organized as follows: Section 2 intro-
duces the biased TOA model, and Section 3 derives its localization
CRLB. An approximate estimator based on a misspecified model is
given in Section 4. Numerical results are shown in Section 5 and
conclusions are drawn after that.

2. PROBLEM STATEMENT

We are interested in active target localization, where an active trans-
mitter and several passive sensors collaborate to monitor a region of
interest (ROI). Suppose that a target invades the ROI. Passive sen-
sors will claim a local detection and extract the arrival of the reflec-
tion with a matched filter. Physically, the true delay between the
transmitter and the sthe passive sensor is

1
7(0) = Z (116 — sl + 110 — u]l) M

for a distributed configuration, where

e 0O denotes the unknown target location vector;
e s; represents the location vector of the ¢th receiver;
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e wu stands for the location vector of the transmitter; and
e c denotes the signal propagation speed.

The dimension of location vectors can be either two or three, and we
will not specify it here for generality.

In active exploration, many real systems including radar and
sonar employ DTWs, such as linear frequency modulation (LFM)
and hyperbolic frequency modulation (HFM), to assure detection ro-
bustness against a moving target. For those systems, however, the
extracted delay will be affected by the target’s Doppler as well as the
usual noise. Specifically, the measured delay for a certain bistatic
transmitter-receiver pair is written as [3,8,9]

Ti ZTi(e)-i-bi(o,’U)—f—wi, 2)
where

e w; represents the measurement noise, and it is modeled as
independently and identically distributed (i.i.d.) zero-mean
white Gaussian noise with variance o'2;

e b;(0,v) refers to TOA bias due to the fact that

E{7; — 1:(0)} = b:(0,v) Z0, 3)
where v represents the velocity vector of the target.

Mathematically, the measurement bias is a function of target location
and target velocity, and it is modeled as [3, 8,9]

#(0,v)X HEM
b;i(0,v) = { c—27i(0,v)” 4)
( ) ri(ec,v))\ , LFM,
where
o )\ = % # 0 is a system related constant, and it de-

pends on waveform pulse width 7', waveform start frequency
f1, and the end frequency fo.
e (0, v) denotes the range-rate, and it is calculated as

. )
#(0,0) = 5 [116+ tv — sil| + 110 + tv — u]]]
t=0
0—-5)Tv (0-—u)Tv
= + : (5)
116 — 4| 116 — ul|

Let v = 0, and then we have 7;(0,v) = b;(0,v) = 0. Thus,
the stationary localization model in [1] can be treated as a special
case of (2). Note that [4] also emphasizes bias in target localization.
However, its bias refers to algorithm rather than measurement, and
the mathematical model in [4] is completely different from (2).

3. THE CRLB

3.1. Derivation

Suppose that the transmitter and all receivers are properly synchro-
nized and that their coordinates are known. Therefore, distributed
TOAs can be extracted to infer the target location. Let the likelihood
function of 7; be

2
~ 1 (7~'i — Ti(e) — bL(B, ’U))

[(7:]©) = W] exp < - 952 , (6)

where ® = [07,vT]" collects the unknown target location and

velocity vectors. Let Z = {71, - - - , T } represent the measurement

set, where N denotes the number of receivers, and thus we have
f(zle) = ]Ifm® )

as the w;’s are independent. Suppose that © is an unbiased estimate
of ®. The estimate’s covariance matrix will be bounded by [11]

E{(®-0©)(©-0)"}-J ", ®)

where J is the Fisher information matrix (FIM) defined as

- [yl

:_E:{ { mﬂm@r}. ©)

With the fact that
olnf(7®) 9 (7i — 7:(8) — bi(6,v)) o
L) 202
T —1i(0) — b:i(0,v) {873(0) n Bbi(e,v)}
- o2 B 00 |’
one can obtain
i{alnf(m@)r
90 90
1 {an(e) 6bi(0,v)} {an(e) abi(e,v)r
T 2| 08 90 90 90
ﬁ*ﬂ(@)fbi(e,v)i{an(e) abi(e,v)r
+ = 6|l e "o | -

Since E{7; — 7(0) — b;(0,v)} = 0, J is recast as

N T
J’ﬂz{ 90 00 e oo | 1P

1=

Py
=e;

Obviously, J is spanned by N column vectors. As the true delay
7:(0) does not depend on v, the first term of e; is specified as

a7i(8) oni(0) b

where h; £ H9 - H + H9 H for notational simplicity. Recalling
(4), the second term can be expressed as

] Ac . 01 (8,v)
9bi(8,v) _ { @ % HEM (14)
70 A on(00) LFM.
As 7;(0,v) is a function of € and v, % is obtained as
. or; (0,v)
07:(8,v) _ { o ] : (15)
20 07;(8,v)

ov
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where

M:i{m} Q{M}

00 116 — sill 16 — ul|
_ v B (0 —5)(0 —5)Tv
116 — si| 16 — sil?
v (0 —u)(0—u)Tv 4
+ - A4, (16)
116 — wl] 160 — w]?
and
87;2‘(0, 'l)) 0 — S; 0 —Uu
= —+ = h;. 17)
Ov 116 — sil| -~ [|0 — w]

3.2. Analysis

The derivation of that CRLB implies that the FIM in (8) is invert-
ible or nonsingular, and the property of J for this problem will be
analyzed below. Substituting (13), (16), and (17) into (12), the FIM
matrix for the LFM case can be written as

N T
! hi+2di | [ hi+2ds
J—razZ{ A } { A } - 19
i=1

i=

Clearly, if (Ad;) goes to zero,

. D DAY 7 XD i hhT}
st = { NSV hhE NS Rt e
becomes singular. In a real situation, A is less than unity, the target is
generally not especially proximate to the sensors, and its velocity is
low. These imply that the elements of d; are much smaller than those
in h;, and hence J is ill-conditioned. The argument for the HFM
case is similar, as 7; (0, v) < ¢, which results in
[9].

An exact analysis of the condition number (CN) of J is chal-
lenging, and we will give some numerical results instead. An under-
water sonar system is visualized, and its two-dimensional configura-
tion is shown in Fig. 2 (a). The system parameters are: ¢ = 1500
m/s, T = 100 ms, fi = 11 kHz, fo = 9 kHz. The CNs of FIMs
for different target locations and velocities are shown in Figs. 2 (b)
and (c), where a specific value at point (2o, yo) stands for the cor-
responding CN if the target is located there. The minimum CNs
for (b) and (c) are 1.21 x 10* and 1.05 x 10°, respectively. From
those figures, we can see that /) the CN of the FIMs are very high
(even though the sensor geometry is very good here), and informa-
tion matrices are ill-conditioned. 2) The CN will increase with the
decrease of velocity. These observations indicate that one may not
achieve satisfactory estimation of both target-location and -velocity
simultaneously.

Here is an intuitive explanation. Based on (4), only the bias part
b; (0, v) contains the velocity information. However, the amount of
information is, with reasonable parameter settings, far too wee to
guarantee a reliable velocity estimation, and this causes the FIM to
be ill-conditioned. In addition, the estimate of velocity with model
(4) may also degrade the estimation of target location. In [10], the
authors show that there is no unbiased estimator with finite variance
if the FIM is singular, and CRLB fails to provide any valuable infor-
mation. Some approaches have been suggested to modify the CRLB
under such circumstances: adding a prior distribution on the param-
eters or adding constraints to the parameter space. However, those
methods may not work here as the target is usually hostile, and extra

Ac ~ A
(c2r (007 ©

information is generally unavailable.
In brief, then, localization with Doppler biased TOAs is an ill-
conditioned problem.

4. QUASI MAXIMUM LIKELIHOOD ESTIMATION

4.1. Misspecified Estimator

Localization with Doppler biased TOAs is ill-conditioned, and an
unbiased estimator with finite variance does not exist. In order to
find a feasible location estimator, and we are interested in a misspec-
ified estimator in this section. The idea is simple: one may inten-
tionally or unintentionally neglect the TOA bias b;(0, v) in (4), and
reformulate a misspecified likelihood function as

1 (7~'i — 7'1'(0))2
e (- ) @

which yields a misspecified ML estimator’

fa(7:10) =

6, = arg max f(Z160) = argmaxln f.(Z16)

= argmmz ;i —T1i(0)]". 21

Statistically, the misspecified ML is termed a Quasi maximum like-
lihood (QML) [12], and it is similar to the classic bias-free localiza-
tion formula. As opposed to the classic ML, the QML relies on a
misspecified or approximate rather than exact signal model.

4.2. Asymptotical Performance Analysis

The objective function of (21) is non-convex, and an analytical so-
Iution of éq is unavailable. An accurate performance analysis of a
QML is rather challenging. In this part, its asymptotical performance
will be examined. Let the Kullback-Leibler divergence between the
true probability density function (pdf) and the misspecified pdf

f(Z]|©.)
f(Z|© (Z19)) (Z|©y) dZ  (22)
D (£(21©)If4(716) / f(z100m L7
have a unique minimum 6, where ®; = [Ot , Vi ] denotes the

parameters of truth, and then we have that

. éq exists, and éq converges to 8™ almost surely if either the
number of sample Z [12] or the signal-to-noise ratio (SNR)
of measurements [2] goes to infinity.

In other words, 8 is the asymptotic mean of 9q, and it offers an
insight in misspecified estimator design. Since the 7;’s are indepen-
dent, D (f(Z|©+)||fq(Z]0)) is recast as

D (f(Z]©0)]1£,(210)) = > D (f(7:[©0)|| fo(7:10))  (23)

=1
= Z/ [(7i]©¢) In

'As the estimator here intentionally employs a signal generation model
different from what is true, it is often known in the statistics literature as a
misspecified estimator [12].

(Tz\@z)

Tu(m1e) T
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Fig. 2. An illustration of sensor configuration and CNs for FIM with different velocity parameters:
which includes a single transmitter and ten receivers, (b) CNs with v =

[10 cos(—m/4), 10 sin(—m/4)]7
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Fig. 3. The distance between 6" and 04, say ||0™ — 0;||, for different
target parameters: (a) v = [10cos(—m/4), 10sin(—7/4)]" mJs,
and (b) v = [30 cos(7/4), 30 sin(7/4)]"

Recall (6) and (20), and hence we obtain
f(7i©)|[f4(7:]6))
/ £y = T = [ = mi(6)

202

bi(0:,v0))

d7;

(6) — 7(8:) — bi(01,v4)]?

= . 24
252 (24)
Thus, the minimum can be reached by
= arg mlnz 7:(0 7:(0¢) — b; (Ot,vt)]z. (25)

Interestingly, 0% does not depend on o2. In addition, if bi(0¢,v¢) =
0 for all %, one can obtain that 8* = 6. This is physically reason-
able, as the ‘misspecified’ model becomes exact under this condi-
tion, which can happen if the target is stationary: v = 0.

5. NUMERICAL RESULTS

The first example shows distances between 8™ and 6, for different
target parameters and in two dimensions. The system configuration
and parameters are the same as the example in Section 3. The nu-

(b) log;((CN)

1000 500 1000

(c) log;o(CN)

(a) the sensor configuration,

[30 cos(7/4), 30sin(r/4)]" m/s, and (c) CNs with v =

merical result is in Fig. 3, where a specific value at point (zo, yo)
stands for the distance if the target is located there. From those fig-
ures, we see that /) the difference between 6" and 6, depends on
target location; and, 2) the distance becomes large if target velocity
increases. Intuitively, 8 is the closest point for the two different
model spaces. As the bias b;(0,v) is a function of target location,
the space for the exact model is target location dependent, and hence
so is 0. Thus, observation /) is physically reasonable. If the sys-
tem parameters such as frequency span and pulse width are fixed, the
bias relies on v as well as target location 6. A larger v will introduce
more bias, which means the model divergence becomes larger, and
hence there will be an increase on ||0* — 6:||. As a consequence,
observation 2) is intuitively correct.

6. CONCLUSIONS

Many real radar and sonar systems utilize DTWs to extract wave-
form propagation delays to deliver a Cartesian measurement reflec-
tive of the target. A DTW enables an active system to be capable of
a certain robustness in detection, however, at the cost of introducing
Doppler dependent TOA (or range) bias. The TOA bias is a func-
tion of unknown target location and velocity vectors, and thus the
parameter space has been enlarged twice with respect to the tradi-
tional TOA based localization. In this paper, we show that the FIM
of joint location and velocity estimation is unfortunately execrable,
and this means that while in principle joint estimation of position and
velocity is possible, the numerical issues are at present insurmount-
able. However, an estimator based on a misspecified model has been
suggested, and it provides acceptable location estimates.
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