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ABSTRACT
The objective of this paper is to find numerical upper bounds
on the optimal solution to the sensor placement problem.
Given noisy measurements and knowledge of the state cor-
relation matrix, the sensor placement problem can be for-
mulated as an integer programming problem using a linear
minimum mean squared error estimator. Since finding the
optimal placements of a fixed number of sensors in a large
network is computationally infeasible, finding bounds for
the optimal solution is a fundamental task. In this paper we
present a family of nested bounds using matrix pencils and
their generalized eigenvalues that upper bound the optimal
performance. In the analysis we consider nodes that we want
to place sensors and other nodes where we cannot or do not
want to place sensors. Finally we compare the upper bounds
with the optimal solution using simulations on a 5 by 5 grid
network.

Index Terms— sensor placement, matrix pencils, gener-
alized eigenvalues

1. INTRODUCTION

Placement of sensors to monitor and estimate behavior of
complex systems has applications ranging from the electric
grid to the natural environment to biomedical monitoring.
Since only a limited number of sensors can be deployed,
selecting the best sensor locations is a fundamental problem.
And as such, there has been much work done on the optimal
placement of sensors. In [1], the optimal placement of sensors
is considered where the probability of sensor detection de-
pends on the distance between the nodes with sensors placed
on a two or three dimensional grid. Placement of wireless
sensors was studied in [2] where the sensors are placed at
nodes such that the network satisfies a predetermined lifetime
and coverage requirement. In [3], the authors model spatial
phenomena as a Gaussian process and consider placement
of sensors using optimal experimental design to maximize
mutual information between sensor locations.
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Other research has considered Phasor Measurement Unit
(PMU) placement in the power grid [4–6]. In [4] the problem
is formulated as a state estimation problem to make the grid
observable. More recently, in [5] a greedy approach is pro-
posed for the PMU placement problem. Performance bound
for the greedy algorithm is obtained in [3, 5], where the ob-
jective functions are submodular. An estimation theoretic ap-
proach is proposed in [6]; after posing the optimization prob-
lem as a linear regression problem, a convex relaxation is de-
veloped to sub-optimally solve the PMU placement problem.
In [7], the authors present a unified description of different
algorithms proposed to solve the PMU placement problem.

In fact, the different algorithms discussed in the literature
give lower bounds to the optimal solution. In this paper we
propose a family of upper bounds on the optimal solution to
bound the difference between the optimal and suboptimal so-
lutions. Thereby, we significantly extend our prior work in [8]
by presenting nested bounds with analysis of the bounds us-
ing matrix pencils and their generalized eigenvalues.

The rest of the paper is organized as follows: Section 2
gives the formulation of the problem. Next, in Section 3 we
find a family of upper bounds on the optimal solution. In
Section 4 we present simulation results. Related works are
discussed in Section 5. Finally, Section 6 summarizes the
results of this paper and suggests direction of future work.

Notation Upper case letters denote random variables; un-
derlined letters stand for vectors; boldface upper case letters
denote matrices, and In denotes the n × n identity matrix;
〈A, B〉 denotes a matrix pencil formed by matrices A and
B; (·)T and E (·) stand for transposition and expectation, re-
spectively.

2. PROBLEM STATEMENT

Let the state vector be X ∈ Rn and the observation vector be
Y ∈ Rm, where m ≤ n. We assume that the sensors are all
identical and make noisy measurements with variance σ2. We
consider a linear model described by

Y = C(X + σN) (1)
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where X and N are statistically independent zero-mean ran-
dom vectors with covariance matrices ΛX and In, respec-
tively. C is a binary matrix composed of m rows of the n×n
identity matrix In. The positions of ones in the matrix C de-
note the position of the sensors.

To find an estimate of the entire state vector X using the
measurement vector Y , we use the linear minimum mean
squared error estimator is given by [9]

X̂(Y ) = E (X|Y ) = E
(
X Y T

)
E
(
Y Y T

)−1
Y , (2)

where E
(
X Y T

)
= ΛXCT and E

(
Y Y T

)
= CΛXCT +

σ2Im. The error is defined by E = X − X̂(Y ) and the er-
ror covariance matrix is given by [9]

E
(
E ET

)
=ΛX −E

(
X Y T

)
E
(
Y Y T

)−1
E
(
Y XT

)
. (3)

The optimization problem is to find the matrix C∗ that mini-
mizes the total estimation error tr E

(
E ET

)
. This can be de-

fined as an integer programming problem of choosingm rows
of In that minimize tr E

(
E ET

)
.

Definition. Let C[m×n] denote the set of all m × n matrices
composed of m rows of the identity matrix In. �

The optimization problem is then given by
C∗ = arg min

C∈C[m×n]

tr E
(
E ET

)
= arg min

C∈C[m×n]

E
(
ETE

)
. (4)

Since the first term in (3) (i.e., ΛX ) does not depend on the
choice of matrix C, we can restate the optimization problem
as an equivalent maximization problem using the following
definition.

Definition. Let the efficacy of matrix C be defined as

J(C)
∆
= tr

{
E
(
X Y T

)
E
(
Y Y T

)−1
E
(
Y XT

)}
(5)

= tr
{[

C(ΛX + σ2I)CT
]−1

CΛ2
XCT

}
. (6)

Note that (6) has the form of the generalized Rayleigh quo-
tient. �

The optimization problem (4) is then equivalent to
C∗ = arg max

C∈C[m×n]

J(C), (7)

which is an integer programming problem of choosing m
rows of the identity matrix In that maximize the efficacy. The
optimum solution to (7) requires an exhaustive search by test-
ing all

(
n
m

)
possible choices of m rows, which becomes com-

putationally infeasible even for moderately sized n and m. In
fact, the sensor placement problem is NP-complete [10].

3. UPPER BOUNDS ON THE OPTIMAL EFFICACY

From [3,7,8] it is obvious that there exists numerous ways of
obtaining lower bounds on the optimal efficacy J(C∗). How-
ever, to evaluate the performance of these lower bounds we
want to obtain numerically computable upper bounds for the
difference J(C∗) − J(C). To achieve this goal, we devote
this section to obtain a family of upper bounds by relaxing

the constraints on the optimization problem in (7). And as
such, instead of considering matrix C whose entries take val-
ues in the set {0, 1}, we consider an unconstrained matrix F
whose entries take values in R.

Definition. For m ≤ n, let F [m×n] be the set of all m × n
matrices with rank m. �

Similar to (7) we formulate an optimization problem with
the relaxed constraints as
F∗ = arg max

F∈F [m×n]

J(F)

= arg max
F∈F [m×n]

tr
{[

F(ΛX + σ2I)FT
]−1

FΛ2
XFT

}
. (8)

Since C[m×n] ⊂ F [m×n], we have J(F∗) ≥ J(C∗). The
following theorem provides a method for calculating J(F∗)
in a closed form.

Theorem 1. [8] If ΛX is a non-negative definite matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, then

J(F∗) =

m∑
j=1

λ2
j

λj + σ2
. (9)

3.1. Nested bounds

In this section we develop a family of upper bounds to the op-
timization problem (7). These nested upper bounds are calcu-
lated when

1. some k ≤ m optimal sensor locations are available and,

2. some ` ≤ n−m optimal locations are available where
the sensors cannot be placed.

In fact, any of these two smaller optimizations can be replaced
by a physical constraint imposed on the sensor network. The
nested upper bounds H̄k,` are defined as follows

Definition. For any k < m and ` < n−m,

H̄k,`
∆
= max

C1∈C[ ×̀n]
max

C∈C[k×n]

CCT
1 =0

max
F∈F [(m−k)×n]

F[CT CT
1 ]=0

J

([
C
F

])
(10)

�

Theorem 2.
H̄k,` ≥ J (C∗) (11)

Proof.
J (C∗) = max

C∈C[m×n]
J (C)

= max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1 =0

max
C3∈C[(m−k)×n]

C3[CT
2 CT

1 ]=0

J

([
C2

C3

])

≤ max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1 =0

max
F∈F [(m−k)×n]

F[CT
2 CT

1 ]=0

J

([
C2

F

])
= H̄k,`,

where the inequality follows from C[(m−k)×n] ⊂ F [(m−k)×n].
�
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Corollary 2.1. H̄0,0 = J(F∗).

Corollary 2.2. H̄m,` = H̄k,n−m = J(C∗)

We now show that the bounds are nested.

Theorem 3. For any k ≤ m− 1 and ` ≤ n−m,
H̄k,` ≥ H̄k+1,` , (12)

and for any k ≤ m and ` ≤ n−m− 1,
H̄k,` ≥ H̄k,`+1. (13)

Proof. From (10), we have

H̄k+1,`= max
C1∈C[ ×̀n]

max
C∈C[(k+1)×n]

CCT
1 =0

max
F∈F [(m−k−1)×n]

FCT
1 =0

FCT =0

J

([
C
F

])

= max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1=0

max
e∈C[1×n]

eCT
2 =0

eCT
1 =0

max
F∈F [(m−k−1)×n]

F[CT
2 eT ]=0

FCT
1 =0

J

C2

e

F



≤ max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1=0

max
f∈F [1×n]

fCT
2 =0

fCT
1 =0

max
F∈F [(m−k−1)×n]

F[CT
2 fT ]=0

FCT
1 =0

J

C2

f

F



= max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1=0

max
F1∈F [(m−k)×n]

F1CT
2 =0

F1CT
1 =0

J

([
C2

F1

])
=H̄k,`,

where the inequality follows from C[1×n] ⊂ F [1×n]. Equa-
tion (13) can be proved similarly. �

Corollary 3.1 (Nesting).
m∑
j=1

λ2
j

λj + σ2
=J(F∗)=H̄0,0 ≥H̄1,0 ≥· · ·≥H̄m,0 =J(C∗)

m∑
j=1

λ2
j

λj + σ2
=J(F∗)=H̄0,0≥H̄0,1≥· · ·≥H̄0,n−m=J(C∗)

3.2. Computation of upper bounds

In this section we propose ways to numerically compute the
nested bounds in terms of generalized eigenvalues of matrix
pencils. To facilitate the computations, we introduce the fol-
lowing definition of efficacy with respect to a general matrix
pencil 〈A,B〉.

Definition. For two n× n symmetric matrices A and B, de-
fine the efficacy of a matrix F ∈ F [m×n], with respect to the
pencil 〈A,B〉, as

J〈A,B〉(F)
∆
= tr

{(
FBFT

)−1
FAFT

}
, (14)

where A and B are two n× n matrices. �

The maximum of the efficacy in (14) can be calculated
in closed form in terms of the generalized eigenvalues of the
pencil 〈A,B〉.

Theorem 4. [11] Let A and B be symmetric and B be
positive definite. If the generalized eigenvalues of the pencil
〈A,B〉 are γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0, then

J〈A,B〉(F
∗)=

m∑
j=1

γj . (15)

Definition. Let C̄ denote the complement of C, with con-
straints C̄ ∈ C[(n−m)×n] and C̄CT = 0. �

Now we propose the following theorem to numerically
compute the upper bounds in terms of generalized eigenvalues
of matrix pencils.

Theorem 5.

H̄k,`= max
C1∈C[ ×̀n]

max
C∈C[k×(n−̀ )]

(
τk+ max

F∈F [(m−k)×(n−k−̀ )]
J〈Ãk,B̃k〉(F)

)
where the term τk and the modified pencil

〈
Ãk, B̃k

〉
satisfy

τk = tr

{
Ã

[
P−1
k 0
0 0

]}
(16)

Ãk =

[
P−1
k Qk

−In−k−`

]T
Ã

[
P−1
k Qk

−In−k−`

]
(17)

B̃k = Rk −QT
kP−1

k Qk (18)

Pk =

[
Ik
0

]T
B̃

[
Ik
0

]
(19)

Qk =

[
Ik
0

]T
B̃

[
0

In−k−`

]
(20)

Rk =

[
0

In−k−`

]T
B̃

[
0

In−k−`

]
(21)

Ã =

[
C
C̄

]
C̄1Λ

2
XC̄T

1

[
C
C̄

]T
(22)

B̃ =

[
C
C̄

]
C̄1(ΛX + σ2I)C̄T

1

[
C
C̄

]T
(23)

Proof. From (10) we have

H̄k,`= max
C1∈C[ ×̀n]

max
C2∈C[k×n]

C2CT
1 =0

max
F1∈F [(m−k)×n]

F1[CT
2 CT

1 ]=0

J〈Λ2
X ,ΛX+σ2I〉

([
C2

F1

])
(24)

Since C2C
T
1 = 0 and F1C

T
1 = 0, we can write C2 and F1

as linear transformations of C̄1 such that
C2 = CC̄1 where C ∈ C[k×(n−`)]

F1 = F2C̄1 where F2 ∈ F [(m−k)×(n−`)].

Then from (14), we have,

J〈Λ2
X ,ΛX+σ2I〉

([
C2

F1

])
=J〈C̄1Λ2

XC̄T
1 ,C̄1(ΛX+σ2I)C̄T

1 〉

([
C
F2

])
(25)

Because rank(F1) = rank(F2) = m − k and F1C
T
2 = 0,

we have F2C
T = 0. Let F ∈ F [(m−k)×(n−k−`)] and let
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F2 = FC̄. Then from (14), (22) and (23) it follows that

J〈Ã,B̃〉

([
Ik 0
0 F

])
=J〈C̄1Λ2

XC̄T
1 , C̄1(ΛX+σ2I)C̄T

1 〉

([
C
F2

])
(26)

Now we can split the efficacy

J〈Ã,B̃〉

([
Ik 0
0 F

])
into two terms such that

1. the first term does not depend on F

2. the second term equals to the efficacy of F with respect
to a modified matrix pencil of smaller dimension.

Using (19)–(21), we express B̃ in terms of Pk, Qk and Rk

as,

B̃ =

[
Pk Qk

QT
k Rk

]
Then using the partitioned matrix inversion lemma [12], we
have

J〈Ã, B̃〉

([
Ik 0
0 F

])
= tr

{
Ã

[
P−1
k 0
0 0

]}
+ tr

{[
P−1
k QkF

T

−Im−k

]{
F
(
Rk −QTP−1

k Qk

)
FT
}−1

×
[
P−1
k QkF

T

−Im−k

]T [
Ik 0
0 F

]
Ã

[
Ik 0
0 F

]T }
.

Using (16)–(18), we simplify the above equation as

J〈Ã, B̃〉

([
Ik 0
0 F

])
=τk + tr

{(
FB̃kF

T
)−1

FÃkF
T

}
=τk + J〈Ãk, B̃k〉(F) (27)

Combining (24)–(27), we have

H̄k,`= max
C1∈C[ ×̀n]

max
C∈C[k×(n−̀ )]

(
τk+ max

F∈F [(m−k)×(n−k−̀ )]
J〈Ãk,B̃k〉(F)

)
.

�

4. SIMULATION RESULTS

We performed simulations on 5 by 5 grid with unit distance
between neighboring points, i.e., each point is located at unit
distance from its horizontal and vertical neighbors, to evaluate
the performances of the upper bounds H̄k,` (for k = 0 to 5
and ` = 0 to 5). We generated the covariance matrix using a
Gaussian distribution, where the variance between the points,
considered as vectors x1 and x2 is given by [3]:

Λ(x1, x2) = exp
(
−‖x1 − x2‖

2
2

/
(2π)

)
. (28)

Figure 1 shows the simulation results. It is observed from
the simulation that the upper bounds get tighter as k and ` are
increased, which confirms our results in Section 3.

We also performed simulations for different simulation
scenarios, such as sensor placement in IEEE test bus sys-
tem [8], data generated at random etc. (which could not be

0 5 10 15 20 25
0

2

4

6

8

10

12

14

Number of sensors placed, m

E
ff

ic
ac

y

 

 

J(C∗)
J(F∗)
H̄1,1

H̄2,2

H̄3,3

H̄4,4

H̄5,5

Fig. 1. Performances of the upper bounds H̄k,` compared to
the optimal solution for a 5× 5 grid.

presented here due to space limitations). From these simu-
lations we observe that, for any k and `, Theorem 3 holds,
i.e., H̄k,` ≥ H̄k+1,` and H̄k+1,`−1 ≥ H̄k+1,`. However, we
observe that the apriori comparison between the bounds H̄k,`

and H̄k+1,`−1 is not possible without computing the bounds
explicitly.

5. RELATION TO PRIOR WORK

This work significantly extends previous work [8] by con-
sidering a family of nested bounds to upper bound the per-
formance of the efficacy. The computation of these bounds
makes a tradeoff between complexity and the tightness of the
bounds. The bounds not only consider placement of sensors,
but places where we do not want to place sensors. This has
not been considered in previous literature [1–5] and has appli-
cability so that we can analyze cases where there are certain
nodes where we want information, but can not place sensors
in these locations.

6. CONCLUSION

This paper opens up new directions for studying the sensor
placement problem. We developed analytical upper bounds
for the sensor placement problem constraining where we can
put and not put sensors at different nodes using matrix pencils
and generalized eigenvalues. It is also easy to formulate a
class of greedy realizable algorithms extending previous work
where we are constrained to both add and delete nodes where
we can place sensors. This also leads to more generalized
sensor placement problems where placement is constrained
due to the topology of the network (allowing for distributed
algorithms to place sensors in certain neighborhoods).
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