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ABSTRACT

Sensing systems with multiple sensors and operating modes
warrant active management techniques to balance estimation
quality and measurement costs. Existing literature shows that
in the joint sensor-scheduling and state-estimation problem
for HMMs, estimator optimization can be done independently
of the scheduler at each time step. We investigate the special
case when a MAP estimator is used, and show how the joint
problem can be converted to a standard Partially Observable
Markov Decision Process (POMDP), which in turn enables us
to use POMDP solvers. As this approach is highly redundant,
we derive a direct solution, which exploits the separability
property while still utilizing standard solvers. When com-
pared to standard techniques, the direct algorithm provides
savings by a factor of the state-space dimension. Numerical
results are given for an example motivated by wildlife moni-
toring.

Index Terms— sensor management, POMDP, controlled
HMM

1. INTRODUCTION

Sensing devices are becoming a ubiquitous part of life. Most
commonly, these devices are used to estimate the state of the
surrounding environment (e.g. there is a person in the room,
an enemy plane is approaching, etc.). In many applications,
practical limitations prevent sensors from running all the time.
For example, battery-powered devices are limited by energy.
Alternatively, radar systems may need to trade off reliabil-
ity of measurement with the probability that the measurement
is detected by an enemy. In these cases, resources must be
appropriately managed. These are typical examples of the
problems addressed in the field of sensor management, which
has received growing interest in the past decade; see [1] for a
recent survey.

The fundamental problem for sensor management is that
sequential sensing actions are taken over time, where each
action corresponds to choosing a sensor, which generates new
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observations that provide additional information [2]. The goal
is to construct a causal policy that uses all of the informa-
tion collected thus far to determine the next sensing action,
which has some associated sensing cost. The temporal cor-
relations of the state of the world are modeled as Markov,
and each sensing action determines the quality of the observa-
tions, along with generally influencing the underlying Markov
chain.

In this paper, we consider problems where the underlying
Markov chain is not affected by any of the sensing actions,
which can be interpreted as a hidden Markov model (HMM)
with multiple sensing options. This assumption is motivated
by monitoring applications with stationary, passive sensing
platforms such as the acoustic wildlife monitoring applica-
tion presented in [3]. The problem of joint optimal sensor
scheduling and state estimation for HMMs was first formu-
lated in [4] and is illustrated in Fig. 1. It was shown in [4] that
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Fig. 1. A standard illustration of an HMM augmented with
multiple sensors and a closed-loop sensor scheduler and state
estimator. A standard HMM would have only the states st

and observations zt connected according to the typical HMM
assumptions. This figure was adapted from [4].

the problem is separable; the estimation policy can be solved
first, independent of the scheduler, and the scheduling policy
is constructed using dynamic programming techniques.

Dynamic programming is a solution technique for solv-
ing Markov decision problems (MDP), which was first for-
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mulated as an optimal control problem [5], where actions cor-
respond more generally to physical actuation and control of a
system. The MDP framework is utilized widely for operations
research and robotic planning problems [6].

Partially observable Markov decision processes (POMDP)
are MDPs where the state space is not fully observable (i.e.,
only noisy observations of the states are available). As even
finite-horizon POMDPs are PSPACE-complete [7], the focus
of current research is on developing solution methods that
scale to very large problems [8]. Sensor management prob-
lems are a special type of POMDPs, where actions are limited
to sensing actions.

In this paper, we focus on the maximum a posteriori
(MAP) estimator, showing that by enumerating all possible
sensor/estimation pairs, the scheduling problem can be cast
as a standard POMDP. While this enables the use of standard
existing solvers, it is highly redundant due to the separa-
tion property. Our contribution is to derive a direct solution,
enabling us to leverage standard solvers while achieving
speed-ups that are typically on the order of the dimension
of the state space. Our contribution relies on exact solution
methods which do not scale with problem size; nonetheless,
useful practical speedups are achieved for our motivating
applications, which exhibit tens of states and sensors.

2. SENSOR SELECTION AND STATE ESTIMATION

2.1. Problem Formulation

We assume there is a single discrete-time Markov chain with
a finite state-space, denoted by S, that is observed by M

noisy sensors which give measurements from a finite obser-
vation space Z . Let T denote the transition kernel, such
that τ(s, s′) is the one-step probability of transitioning from
state s to s′. At any given time, only a single sensor, u ∈
M , {1, . . . , M}, can be used to gain information about the
underlying state s, where O is an observation function and
o(s, u, z) is the probability of observing z ∈ Z , given that the
true state of nature is s and sensor u is used.

The belief state, b(s), is an |S|-dimensional vector in a
probability simplex B defined over S, and is updated accord-
ing to Bayes’ rule after observing z using sensor u:

bz
u(s′) =

o(s′, u, z)

p(z|u, b)
·
∑

s∈S

τ(s, s′) · b(s) (1)

where p(z|u, b) =
∑

s′ o(s′, u, z)
∑

s τ(s, u, s′)b(s) is the
probability of observing z. For this scheduling/estimation
problem, it was shown in [4] that b is a sufficient statistic
for constructing optimal scheduling and estimation policies.
In particular, assume that at time t sensor ut is used, zt is
observed, and b is updated to bzt

ut
. Then,

ŝt = ǫ(bzt

ut
) (2)

ut+1 = µ(bzt

ut
) (3)

where ǫ : B → S and µ : B → M are the estimation and
scheduling policies, respectively.

The class of cost functions considered in [4] consist of an
estimation error term weighted by a state-dependent sensor
usage cost. For problems with this structure, it was shown that
the estimation and scheduling problems are separable; this
follows because the state estimate ŝt does not affect the future
evolution of bzt

ut
. This observation allows us to freely choose

any state estimator.
In this paper, we consider the special case of using the

MAP estimator. A joint policy (ǫ, µ) is evaluated by a value
function V (ǫ,µ) : B → R, which we define to be the expected
discounted reward1 for implementing the joint policy (ǫ, µ),
given initial belief b:

V (ǫ,µ)(b) = E(ǫ,µ)

{

∞
∑

t=0

γt·

∑

s∈S

[1{s−ǫ(bt)} − c (s, µ(bt))
]

· bt(s)

∣

∣

∣

∣

∣

b0 = b

}

(4)

where 0 ≤ γ < 1 is a discount factor, and 1 is the indicator
function.

2.2. Equivalence to a Standard POMDP

Although not explicitly stated in [4], choosing the MAP esti-
mator results in a standard POMDP problem [9]. To see this,
define π , (ǫ, µ) as the policy, with the associated action
space:

A = {(e, u) : e ∈ S, u ∈ M} (5)

which is just the enumeration of all estimation, sensor pairs;
note that |A| = M · |S|. Next, define R : S × A → R to be
the reward function, where

r(s, a) = 1{s−e} − c (s, u) , for a = (e, u) (6)

which is just the term in the square bracket in (4). Thus, the
scheduling/estimation problem can be formulated as a stan-
dard POMDP, given as the tuple 〈S,A, T ,R,Z,O, γ〉.

With this notation, the optimal value function, V ∗, is the
unique solution to Bellman’s equation [5]:

V ∗(b) = max
a∈A

{

∑

s∈S

r(s, a)b(s) + γE [V ∗(bz
a) | a, b]

}

(7)

3. A DIRECT SOLUTION

The advantage of interpreting the scheduling/estimation prob-
lem as a standard POMDP is that we can use standard solvers

1From now on, we consider reward, which is the negative of cost.
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(such as the enumeration algorithm, incremental pruning, or
the Witness algorithm, for example); see [6] for a detailed ex-
position. Although this is convenient, it is redundant given
that we know that the scheduling and estimation problems are
separable. In this section, we derive a more direct solution.

With slight abuse in notation, let cu be an |S|-dimensional
vector, with cu(s) = c(u, s). Then, writing the value iteration
equation starting from (4) for iteration n:

Vn(b) = max
(e,u)∈A

∑

s∈S

1{s−e}b(s) − cT
u b + γE[Vn−1(b

z
u) | u, b]

= max
e∈S

{b(e)} + max
u∈M

{

−cT
u b + γE[Vn−1(b

z
u) | u, b]

}

(8)

where the second line shows why the scheduling/estimation
problem is separable; the first max defines the MAP estima-
tor, and the second max represents the value iteration step
if one were to consider the following auxiliary POMDP:
〈S,M, T ,−c,Z,O, γ〉.

Thus, we can use any POMDP solver and make one value
iteration on the auxiliary problem, generating some minimum
set of alpha vectors, denoted as Γ⋆

n. Again abusing notation,
let ge be an |S|-dimensional unit vector with a one in the eth

dimension; define ΓS = {ge : e ∈ S}. Continuing from (8),

Vn(b) = max
φ∈ΓS

φT b + max
α∈Γ⋆

n

αT b (9)

= max
φ∈S,α∈Γ⋆

n

(φ + α)T
b (10)

= max
β∈Γ̄n

βT b (11)

where

Γ̄n = ΓS ⊕ Γ⋆
n , {φ + α : φ ∈ ΓS , α ∈ Γ⋆

n} (12)

and ⊕ is known as the cross-sum operator. This method of
enumerating all of the possible alpha vectors to represent the
value function at iteration n is part of what is known as the
enumeration algorithm. The second step of the enumeration
algorithm is a pruning step, denoted as Γn = Prune(Γ̄n),
which reduces the set of alpha vectors to its minimum set.
In its simplest form, Prune systematically checks each vector
in Γ̄n to see if it dominates at some belief state, which serves
as a witness that the vector is in the minimum set. The ex-
istence of such a point can be determined by solving a linear
program (LP):

max
b∈B

δ

s.t. γ̂T b ≥ γT b + δ ∀ γ 6= γ̂ ∈ Γ̄n

S
∑

s=1

b(s) = 1

b(s) ≥ 0 ∀ s ∈ S

If the program does not return δ ≥ 0, γ̂ is removed. Once this
procedure is completed for every vector in Γ̄n, Γn will be the
minimum set. At worst, Prune(Γ̄n) must solve |Γ̄n| LPs.

Solving these LPs is by far the most computationally ex-
pensive part of any POMDP algorithm. As such, it is common
to measure the complexity of an algorithm by the number of
LPs it must solve. It is well known (see [6]) that the maxi-
mum number2 of LPs any POMDP algorithm must solve at
iteration n is |A| · |Γn−1|

|Z|.

Claim: The maximum number of LPs that the direct al-
gorithm will have to solve at iteration n is |M| · |Γn−1|

|Z| +
|Γn| · |S|.

Proof 1. The auxiliary POMDP defined above requires at
most |M| · |Γn−1|

|Z| LPs.

2. |Prune(Γ⋆
n ⊕ ΓS)| , |Γn|.

3. For two minimum sets Γ1 and Γ2, |Γ1 ⊕ Γ2| ≥
max{|Γ1|, |Γ2|}.

4. Therefore, |Γ⋆
n| ≤ |Γn|, and |Γ⋆

n ⊕ ΓS | ≤ |Γn| · |S|.

5. Prune(Γ⋆
n ⊕ ΓS) requires at most |Γn| · |S| NPs.

6. Both prune operations combined require no more than
|M| · |Γn−1|

|Z| + |Γn| · |S| LPs.

Compare this with the indirect method that solves the con-
verted POMDP problem in Section 2.2 using standard algo-
rithms. This method solves at most |S| · |M| · |Γn−1|

|Z| LPs.
In situations where |Γn−1| ≈ |Γn|, the complexity is domi-
nated by the |Γn−1|

|Z| term. In these cases, the direct method
provides a complexity reduction of almost a factor of |S|.

Finally, note that the space of estimator decisions does not
have to be the same as the state space. It is straightforward to
adopt these results for any decision space. For example, if the
decision space is D, substitute |D| for |S| above. An example
in which the decision space is different than the state space is
given in the next section.

4. RESULTS

Practical savings of the direct algorithm are shown on a sam-
ple problem. For purposes of experimentation, model param-
eters are representative, but were not learned experimentally.
This problem is motivated by an acoustic bird-monitoring ap-
plication. The bird can exist in one of three states: absent,
present and calling, or present and resting. The sensing op-
tions are sleep or sense. The sensor’s observation is either
silent, call A, or call B. The absent and resting states are in-
distinguishable to the sensor. Sleeping comes at a cost of 1

2In the case of the batch enumeration algorithm, this is the exact number
of LPs solved at each iteration
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µA, while sensing costs 2.6 mA, which represent average cur-
rent draw on a low-power microcontroller. We consider two
variants of the problem: one in which we want to decide if the
bird is absent or present, and one in which we want to decide
if the bird is absent, calling, or resting. The state-transition
matrix is

A =





0.9 0.07 0.03
0.0 0.8 0.2
0.5 0.15 0.8



 ,

where Aij = τ(i, j). Not sensing results in a uniform obser-
vation matrix, and the observation matrix for sensing is

B(sense) =





0.98 0.01 0.01
0.31 0.48 0.21
0.98 0.01 0.01



 ,

where B(sense)ij = o(i, sense, j). Finally, the discount fac-
tor is γ = 0.3.

Table 1 shows a comparison between the indirect and di-
rect algorithms on the problem variations described above.
Performance is evaluated with both the total number of LPs
solved and total execution time. The solution with two deci-
sions contains 6 vectors, and the solution with three decisions
contains 24 vectors.

Here we have a case where |Γn−1| ≈ |Γn|. As a result,
we see LP reductions close to a factor of (# decisions) as ex-
pected. This reduction corresponds very closely to the de-
crease in total execution time, justifying the use of LPs as a
complexity metric. For the two-decision problem, LPs were
reduced by a factor of 1.69, and the algorithm completed 1.64
times faster. For three decisions, LPs were reduced by a factor
of 2.78 and the algorithm completed 2.88 times faster.

# decisions algorithm # LPs time (s)

2 Indirect 2,305 3.4

Direct 1,358 2.1

3 Indirect 21,784 44.4

Direct 7,826 15.4

Table 1. Complexity of indirect and direct algorithms

5. CONCLUSIONS

Sensor management for state estimation in HMMs is a well-
studied problem. When a MAP estimator is chosen, we have
shown that the problem can be converted into a POMDP.
As such, standard POMDP solvers can be utilized. While
a straightforward approach, standard solvers ignore a lot of
the structure of the sensor management problem. Namely,
the state decision can be considered independently from the
sensor scheduler, whereas standard methods would treat them

jointly. Guided by this insight, we showed that the prob-
lem can be separated into a MAP estimator and an auxiliary
POMDP. Using a direct algorithm, complexity can be reduced
by almost a factor of the state-space dimension. Further, the
direct algorithm has no preference as to how the auxiliary
POMDP is solved; any algorithm will work. This paper uti-
lized batch enumeration, the simplest method for combining
the MAP and POMDP portions. However, any number of
tricks in the spirit of traditional POMDP algorithms could be
applied to further speed up this step.

Finally, the wildlife monitoring applications motivating
this work consist of problems that are small to medium-
sized, relative to the size of the problems being addressed by
current POMDP research; our proposed approach provides
useful speedups for simple yet practical sensor management
problems.
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