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Abstract—In this paper, we propose a market based dynamic bit
allocation scheme for target tracking in energy constrained wireless
sensor networks using quantized data. We model the dynamic bit
allocation problem as a market based policy where the fusion center is
the customer and sensors are the producers of the market. The fusion
center releases the energy to purchase m-bit measurements from
sensors in such a way that the trace of the posterior Cramér-Rao lower
bound (PCRLB) on the mean squared error (MSE) is minimized.
Sensors then compete to purchase the energy released from the
fusion center and produce their m-bit quantized measurements which
maximize their profit. Simulation results show that the market based
dynamic bit allocation scheme achieves tracking performance close to
the case where all the sensors report their most accurate information
to the fusion center while the market based dynamic bit allocation
scheme releases energy which is significantly less than the energy
required to transmit all sensor data to the fusion center.

Index Terms—Sensor Management, dynamic bit allocation, re-
source allocation, auctions, price theory, wireless sensor networks

I. INTRODUCTION

A wireless sensor network (WSN) consists of spatially
distributed sensors which are assumed to be tiny devices,with
limited on-board energy. A WSN can perform tasks which
are useful in a wide range of applications such as battlefield
surveillance, environment and health monitoring, and disaster
relief operations. Rather than transmitting entire sensor data
to the fusion center, sensor management policies activate a
subset of sensors to meet the application requirements while
minimizing the use of resources. As an example, in sensor
selection problems, a decision is made on whether or not
a sensor transmits its measurement under the constraint on
the total number of selected sensors [1], [2], [3], [4], [5],
[6]. In this paper, we study the bit allocation problem which
is more general than the sensor selection problem, since in
the bit allocation problem, each sensor could represent its
measurement using different number of bits. In our previous
work [7], we have studied the dynamic bit allocation problem
for target tracking which optimizes the tracking performance
subject to a constraint on the total number of bits that can
be transmitted over the channels between sensors and the
fusion center. Since an exhaustive search to find the optimal
bit allocation is computationally prohibitive, we have devel-
oped computationally efficient sub-optimal algorithms whose
tracking performance are close to that of optimal exhaustive
search.

Rather than putting a constraint on the total number of bits
that can be transmitted from sensors to the fusion center, in
this paper, we put a constraint on the total energy which

is permitted to be used for transmitting quantized sensor
measurements to the fusion center. In order to transmit the
quantized measurements to the fusion center without transmis-
sion errors, the energy required by each sensor is a function
of the number of bits it uses to represent the quantized
measurement and its distance to the fusion center [8]. In this
paper, similar to the models considered in [9], [10], [11], we
consider a mobile fusion center which follows the target by
moving to the estimated target location at each time step of
tracking based on the gathered sensor measurements.

Market based policies for resource allocation in sensor
or communication networks have recently gained significant
attention [12], [13], [14], [15]. In [12], the authors propose a
market framework for adaptive sensor management where the
network resources and the sensor measurements are priced in
order to balance the supply and demand. In this market model,
sensors purchase resources from the fusion center in order to
produce the data, and the fusion center needs to purchase data
from the sensors to accomplish its tasks. The work presented
in [12], considers a network with multi-modal sensors which
transmit analog measurements to the fusion center. The market
has N + 1 assets where N is the number of sensors in the
network and each asset corresponds to the number of mea-
surements that a sensor can provide to the fusion center and
the last asset is the resource that the fusion center distributes
to the sensors. The fusion center maximizes an information
theoretic utility function, where in our previous paper [4]
we have shown that the computational complexity of sensor
management based on information theoretic metrics increases
exponentially as the number of sensors to be managed is
increased.

In our market model, rather than using analog sensor
measurements, we consider each sensor first quantizes its
measurement before transmitting to the fusion center. The
quantized measurement of each sensor is represented in m-
bits and we let the market determine the value of m for each
sensor. In our model, we consider NM+1 assets in the market
where N is the number of sensors in the network, M is the
maximum number of bits that can be transmitted from one
sensor to the fusion center, and the last asset is the energy
that the fusion center can release to the network for data
transmission. The market is said to be clear when the prices of
purchasing bits from sensors and the price of unit energy are
balanced. In our model, we consider a posterior Cramér-Rao
lower bound (PCRLB) based metric for sensor management
at the fusion center which has been shown to have similar
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performance as that with information theoretic metrics when
sensor data is transmitted over the channels without error [4].
The computational complexity of PCRLB (or its inverse Fisher
Information) based metrics grow linearly with the number of
sensors to be managed and they are analytically tractable [4],
[7].

The rest of the paper is organized as follows. In Section
II, we introduce the problem set-up for target tracking in
WSNs. In Section III, we explain the details of the market
based dynamic bit allocation scheme. Section IV presents a
numerical example and Section V concludes our work.

II. SYSTEM MODEL

In this paper, we assume N sensors that are grid deployed
in a square surveillance area of size b2 as shown in Fig. 1.
Note that target tracking based on sensor readings can be
performed for an arbitrary network layout if sensor placements
are known in advance. All the sensors report to a mobile
fusion center which physically tracks the target according to
the estimated the target state, i.e., the position and the velocity
of the target. We assume that the target (e.g., an acoustic or
an electromagnetic source) emits a signal from the location
(xt, yt) at time t.
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Fig. 1: A WSN with N = 9 sensors, an example target trajectory with q = 2.5 ×
10−3 and the location of the fusion center at t = 1.

In this paper, we use exactly the same WSN model we had
used in our previous work [7]. We consider a single target
moving in a two-dimensional Cartesian coordinate plane. At
time t, the target dynamics are defined by the 4-dimensional
state vector xt = [xt yt ẋt ẏt]

T where ẋt and ẏt are the
target velocities in the horizontal and the vertical directions.
The superscript T denotes the transpose operation. Target
motion is defined by the following white noise acceleration
model:

xt+1 = Fxt + υt (1)

where F models the state dynamics and υt is the process noise
which is assumed to be white, zero-mean and Gaussian with
the covariance matrix Q [7]. Note that Q is defined by ∆
and q which denote the time interval between adjacent sensor
measurements and the process noise parameter, respectively.

The target is assumed to be an acoustic or an elec-
tromagnetic source that follows the power attenuation

model. Let P0 denote the target signal power, di,t ,√
(xi − xt)2 + (yi − yt)2 is the distance between the target

and the ith sensor, and (xi, yi) are the coordinates of sensor
i sensor. At time t, the received signal at sensor i is given by

zi,t =

√
P0

1 + d2i,t
+ ni,t (2)

where ni,t is the noise term modeled as additive white Gaus-
sian noise (AWGN), i.e., ni,t ∼ N (0, σ2

n), which represents
the cumulative effects of sensor background noise and the
modeling error of signal parameters. A sensor measurement
zi,t at sensor i is locally quantized before being sent to the
fusion center using Ri,t bits for Ri,t = m,m ∈ {0, 1, . . . ,M}.
M is the maximum number of bits that a sensor can use
to transmit to the fusion center and M = 0 means that
the sensor does not transmit its measurement to the fusion
center. The quantization thresholds are assumed to be identical
at each sensor for simplicity. In order to find the decision
thresholds at each quantization rate, we use the Fisher infor-
mation based heuristic quantization method which has been
described in [16]. The fusion center receives the data vector
Dt = [D1,t, . . . , DN,t] from N sensors with a corresponding
quantization rate vector Rt = [R1,t, . . . , RN,t]. The details
of the quantization process and the likelihood function of the
sensor data Dt given the target location xt and rate vector Rt

have been given in our previous work [7].
Based on the received data Dt quantized with rate vector

Rt, and the prior probability density function of xt, p(xt), the
PCRLB on the mean squared estimation error has the form,

E
{
[x̂t − xt][x̂t − xt]

T |Rt

}
≥ J−1

t (Rt) (3)

where Jt(Rt) is the 4 × 4 Fisher information matrix (FIM)
and can be decomposed into two parts as,

Jt(Rt) = JD
t (Rt) + JP

t (4)

where JD
t (Rt) represents the Fisher information matrix ob-

tained from the sensor data and can be written as the sum-
mation of Fisher information matrices of individual sensors
[7]. Finally JP

t is the a priori Fisher information. We employ
a particle filter to solve the Bayesian sequential estimation
problem for the system given in (1) and (2). Particle filters
are sequential Monte Carlo methods based on particle rep-
resentations of probability density function p(xt) which are
useful to compute the data part and the a priori part of the
Fisher information matrices [17] as well as the minimum mean
squared error (MMSE) estimate of the target location. Due
to space limitations, we omit the details of derivation of the
Fisher information for the system model considered in this
work and the computation of Fisher information by using
the particle filter approximation. A detailed discussion can be
found in our previous work [7].

In our model, we consider a mobile fusion center which
moves to the estimated target location at each time step of
tracking. Let (x0,t, y0,t) be the location of the fusion center at
time step t. Let the distance between sensor i and fusion center
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be denoted by hi,t =
√
(xi − x0,t)2 + (yi − y0,t)2. Then, in

order to transmit m bits successfully to the fusion center, each
sensor should transmit its measurement with energy [8],

ei(m) ∝ mh2
i,t (5)

III. MARKET BASED DYNAMIC BIT ALLOCATION
SCHEME

Price theory explains the trade of assets between consumers
and producers. Consumers in the market buy and sell different
assets and producers are able to transform assets of one kind
into assets of a different kind. In our problem, the fusion
center is the sole customer who buys information from the
sensors. The sensors are the producers who compete for the
energy released from the fusion center to produce the bits
that represent their measurement. In our proposed market there
are NM + 1 assets where NM assets represent the purchase
of m-bit measurements m ∈ {1, . . . ,M}, from sensor i,
i ∈ {1, . . . , N}. The last asset is the energy released from
the fusion center or the total energy purchased by the sensors
to transmit their quantized measurements successfully to the
fusion center.

For the fusion center, the demand preference
is represented by the demand vector of size
NM + 1 × 1, ϕd , [ϕd,1, . . . , ϕd,j , . . . , ϕd,NM+1]

T =
[q1,1, . . . , qi,m, . . . , qN,M , qe]

T where qi,m ∈ {0, 1} is the
demand requesting m bits from sensor i. If sensor i transmits
its measurement in m bits, qi,m = 1, otherwise qi,m = 0. qe
is then the total energy released from the fusion center. In
the demand vector, ϕd, the assets qi,m > 0, since the fusion
center buys the assets and qe < 0, since the fusion center
sells the asset. Then p , [p1,1, . . . , pi,m, . . . , pN,M , pe]

T is
the price vector where pi,m is the price paid to purchase m
bits from sensor i and pe is the price of unit energy. Given
the price vector, p, the fusion center minimizes the error in
estimation by minimizing the trace of the PCRLB matrix
subject to the constraints,

min
ϕd,1,...,ϕd,NM

trace

(
N∑
i=1

M∑
m=1

qi,mJD
i,t(Ri,t = m) + JP

t

)−1

s.t.
M∑

m=1

qi,m ≤ 1 i ∈ {1, 2, . . . , N} (6)

N∑
i=1

M∑
m=1

qi,mpi,m ≤ peE0 ; qi,m ∈ {0, 1}

Then, the solution of the above optimization problem deter-
mines the released energy to the network as,

ϕd,NM+1 = qe = −
∑N

i=1

∑M
m=1 qi,mpi,m
pe

(7)

In (6), the first N constraints ensure that each sensor can
only use one of M levels to quantize its measurement or can
stay silent. In the next constraint, E0 is the fusion centers
endowment of energy that is the maximum energy that can
be released for the use of sensors. This constraint implies that

the total wealth that can be spent to minimize the trace of the
PCRLB, should be less than the wealth that can be generated
by selling all the energy.

Sensors in the network act as producers who buy energy
from the fusion center in order to produce their m-bit mea-
surements. In the production model of sensor i, qi,m > 0 is the
output and Ei < 0 is the input (raw product) of the production.
We assume that sensor i has an initial wealth, represented by
Wi. Then, the amount of energy that a sensor can afford to
buy from the fusion center is Ei = −Wi/pe. . The production
vector of sensor i is represented by χi , [qi,1, . . . , qi,M , Ei]

T .
If ei(m) ≤ −Ei, sensor i has sufficient energy to transmit
its measurement in m-bits. Given the price vector p, sensor i
quantizes its information in m-bits which maximizes the profit,

max
χi

M∑
m=1

pi,mqi,m + peEi

s.t. ei(m) ≤ −Ei (8)

where we find the optimal m for sensor i among the fea-
sible m’s. Having solved (8) for all i ∈ {1, 2, . . . , N},
we define χp as the WSN’s production vector of size
NM + 1 × 1 and χp , [χp,1, . . . , χp,j , . . . , χp,NM+1]

T =

[q1,1, . . . , qi,m, . . . , qN,M , qp]
T where qp =

∑N
i=1 Ei.

ϕd and χp are the solutions of the two separate optimization
problems given in (6) and (8) given the price vector p. Let the
jth asset of demand vector ϕd and production plan vector χp

be ϕd(j) and χp(j) respectively for all j ∈ {1, 2, . . . , NM +
1}. The market equilibrium is reached by updating the price
vector, p, as a function of the demand ϕd, and the production
χp, of each asset in this market. The market is said to be clear
at price p if ϕd(j) = χp(j) for all j ∈ {1, 2, . . . , (NM)+1}.
In this paper, we use the iterative auction algorithm given in
Algorithm 1 to find the market equilibrium [12]. We assume
that the fusion center knows the locations of each sensor and
carries out all the steps of Algorithm 1. The fusion center
then requests the quantized measurements from sensors as
determined by the bit allocation scheme.

Algorithm 1 Iterative Auction algorithm to find the market equilibrium

(1) Set v = 0, and price vector p = p0,
(2) Given pv , solve (6) to find the demand vector ϕd.
(3) Given pv , solve (8) to find the production plan vector χp.
(4) Set C(j) = 0 for all j ∈ {1, 2, . . . , NM + 1},

IF ϕd(j) ≈ χd(j), C(j) = 1 ENDIF
IF

∑
C(j) = NM + 1, terminate the auction algorithm, ELSE go to Step

(5) ENDIF.
(5) Given ϕd and χp update prices. For all j ∈ {1, 2, . . . , NM + 1}, do

IF ϕd(j) > χp(j), pv+1
j = pv

j [1 + δpv
j (ϕd(j) − χp(j))] // Demand is

greater than supply, increase the price.
ELSE IF ϕd(j) < χp(j), pv+1

j = pv
j /[1 + δpv

j (χd(j) − ϕp(j))] //
Demand is less than supply, decrease the price.

ELSE pv+1
j = pv

j ENDIF. Set v = v + 1 and go to Step (2).

IV. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate
the effectiveness of the proposed bit allocation scheme. We
assume that each sensor can quantize its measurement in up

4209



to M = 5 bits. Furthermore, the initial wealth of sensors
is assumed to be identical and selected as Wi = 1. The δ
parameter of Algorithm 1 is selected as δ = 0.2. Note that
smaller values of δ result in slower convergence and for larger
values of δ, the market prices do not clear. We first relax the
problem given in (6) by replacing the Boolean variables with
their continuous counterparts, i.e., 0 ≤ qi,m ≤ 1. Then, we use
KNITRO solver [18] to solve the relaxed problem by using its
active-set algorithm. Algorithm 1 is initialized with p0 as the
all one vector. Price, demand and production vectors obtained
at the end of each iteration are used as initial points for the
next iteration of the auction algorithm. Table I presents the
first NM elements of the demand vector at t = 1 and when
E0 = 1000 units of energy is available. As shown in Fig.
1, sensor 1 is relatively close to the fusion center and the
fusion center can buy M = 5 bit information from sensor
1 at a cheap price and the energy released for sensor 1 to
transmit 5 bit information is p1,5/pe ≈ 213.6. Fusion center
also buys 1-bit measurement from sensors 2,4 and 5 and the
total energy consumption is around 300 units. After relaxing
problem (6), the solution vector includes q4,5 = 0.0897 and the
fusion center allocates around p4,5/pe ≈ 700 units of energy
for transmitting q4,5 which is actually not used during the data
transmission.

TABLE I: Fusion center demand qi,m at the price equilibrium at t = 1. For all
i ∈ {3, 6, 7, 8, 9}, qi,m = 0

m = 1 m = 2 m = 3 m = 4 m = 5

i = 1 0 0 0 ∼ 0 1 (213.6)
i = 2 1 (20.1) 0 0 0 0
i = 4 0.9103 (18.2) 0 0 0 0.0897 (720.4)
i = 5 1 (27.72) 0 0 0 0

Fig. 2-(a) shows the total energy required to transmit sensor
data to the mobile fusion center and Fig. 2-(b) shows the
MSE performance of tracking. For E0 = 1000, total energy
consumption is around 300, because of the reasons described
previously. We compare the performance of the market based
bit allocation scheme, with the bit allocation scheme with the
total number of bits constraint [7] where we remove the total
energy consumption constraint and limit the total number of
bits that can be transmitted from sensors to the fusion center.
In other words, the fusion center now distributes 5 bits among
N = 9 sensors. The bit allocation scheme with the total
number of bits constraint allocates all the bits to sensor 5
around t ∈ [6, 11]. For t ∈ {[2, 5]

∪
[12, 16]}, the average

energy consumption of market based bit allocation scheme
with E0 = 1000 and the bit allocation scheme with the total
number of bits constraint are similar. During t ∈ [6, 11], the
mobile fusion center is close to sensor 5 and sensor 5’s data
transmission consumes little energy. On the other hand, within
the same interval, market based bit allocation can buy 5 bit
information from sensor 5 at a cheap price and then is able
to buy additional information from other sensors. That is why
the MSE performance of the market based bit allocation with
E0 = 1000 provides better tracking performance than the bit
allocation scheme with the total number of bits constraint.

When E0 is reduced to E0 = 500, the fusion center can
purchase less information from sensors and the tracking per-
formance degrades. Among all simulated scenario the market
based bit allocation scheme with E0 = 1000 provides the
closest estimation performance to that of the case where all
N = 9 sensors transmit M = 5 bit information.
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Fig. 2: (a) Total energy consumption (b) Summation of MSE on the positional
estimates, MSE = MSEx + MSEy . The MSE at each time step is averaged over
Ttrials = 100 trials. P0 = 103, σ2

n = 1. The initial state distribution of the target
p(x0) is Gaussian with µ0 = [−8 −8 2 2] and Σ0 = diag[σ2

θ σ2
θ 0.01 0.01] and

3σθ = 2 so the initial point of the target remains in the ROI with very high probability.
The target motion follows a near constant velocity model with q = 2.5 × 10−3.
Measurements are taken at regular intervals of ∆ = 0.5 seconds and the observation
length is 10 s.. The number of particles used in the particle filter is Ns = 5000.

V. CONCLUSION

In this paper, we have studied a market based dynamic bit
allocation scheme for target tracking in energy constrained
wireless sensor networks using quantized data where the
fusion center acts as a customer and sensors act as producers
and the prices of purchasing bits from sensors and price
of unit energy balances the market. The proposed scheme
achieves tracking performance close to that of the case where
all the sensors transmit information to the fusion center and
reducing the total energy requirement. As a future work, we
will consider scenarios where the wealth of sensors vary in
time and the design of multiple-time steps ahead dynamic bit
allocation policies are necessary.
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