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ABSTRACT

It has been conjectured by Høst-Madsen and Nosratinia that

the K-user single-input single-output (SISO) complex Gaus-

sian interference channels with constant channel coefficients

have merely one degree of freedom (DoF) regardless of the

number of users, i.e., K . Then, Cadambe and Jafar intro-

duced the idea of interference alignment (IA) being able to

achieve K/2 DoF in time-varying SISO interference chan-

nels. Moreover, their joint work with Wang settled the Høst-

Madsen–Nosratinia conjecture in negative by using the idea

of asymmetric complex signaling to achieve 1.2 DoF for K-

user constant SISO interference channels. In this paper, a lin-

ear IA scheme for K-user constant SISO interference chan-

nels is proposed which could enable us to achieve K/4 DoF

for almost all channel coefficients. This means that whenever

K ≥ 5, the proposed scheme could achieve at least 1.25DoF.

The main idea of the proposed method relies on the linear IA

using symbol extension by Cadambe-Jafar which is not ef-

fective for constant channels. However, we show that along

with signal rotation across every two consecutive time slots to

artificially build a random time-varying channel out of a con-

stant channel, the proposed method can be directly applied to

constant channels to achieve K/4 DoF.

Index Terms— Constant SISO interference channels,

doubly layered signaling, linear interference alignment.

1. INTRODUCTION

The study of degrees of freedom (DoF) of interference net-

works was pioneered by Høst-Madsen and Nosratinia who

investigated that for the two user Gaussian interference chan-

nel, only one DoF can be achieved, even with cooperation

between transmit nodes and/or cooperation between receive

nodes [1]. They even showed that the DoF of the K-user

Gaussian interference channel is less than or equal to K/2
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and also conjectured that for the fully connected K-user con-

stant single-input single-output (SISO) channel, the interfer-

ence network has at most one DoF.

Later, Cadambe and Jafar showed that for the K-user

SISO interference channels with time-varying or frequency-

selective channel coefficients, K/2 DoF is achievable [2].

For constant channel coefficient the situation is somewhat

different from time-varying channels. Although some exam-

ples have been discussed for constant channels that achieve

more than one DoF, all these special cases span only a subset

of measure zero [3, 4]. In other words, for almost all channel

coefficient values, it was not known whether it is possible to

achieve more than one DoF. The authors in [2] showed that

for the 3-user multi-input multi-output (MIMO) interference

channels with M > 1 antennas at each node, we can achieve

exactly 3M/2 DoF even with constant channel coefficients.

However the situation for single-antenna nodes remained

unsolved till Cadambe, Jafar and Wang showed that for the

class of linear beamforming and interference alignment (IA)

schemes, 1.2 DoF can be achieved on the complex Gaussian

3-user interference channel with constant channel coefficient,

for almost all values of channel coefficients [5]. Recently,

the idea of real interference alignment has been used in [6]

which ensures that MN
M+N

K DoF is achievable for the K-user

constant MIMO interference channels with M antennas at

each receiver and N antennas at each transmitter. This means

that for the K-user constant SISO interference channels K/2
DoF is achievable.

In this paper, a framework forK-user constant SISO inter-

ference channels is presented which could achieve K/4 DoF

for almost all channel coefficients by using IA. In the pro-

posed framework, we use random rotations at the transmit and

receive sides to effectively fluctuate the constant channel. We

also identified that it is necessary to transmit two versions of

rotation for the same signals to design precoding matrices that

are full rank using symbol-extension precoding. Since we are

transmitting the same symbols twice, we achieve only K/4
DoF. The proposed scheme is applicable to both complex and

real channel coefficients and noise components. Second and

more importantly, the proposed interference alignment is lin-

ear and could achieve at least 1.25 DoF for K ≥ 5. However,

we also note that the proposed method may only enable us to
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achieve up to 0.75 DoF whenever K ≤ 3.

The paper is organized as follows: In Section 2, we de-

scribe the general system model of channels based on symbol

extensions. Section 3 reviews the standard IA in time-varying

channels. In Section 4, we derive a useful signaling scheme,

called doubly layered signaling, which enables us to convert a

constant channel to a time-varying one. The system descrip-

tion and the implementation of doubly layered signaling in

constant channels are presented in Section 5, and finally Sec-

tion 6 contains conclusion.

2. SYSTEM MODEL

Consider the K-user SISO interference channel consisting

of 2K nodes, K of which are denoted as transmitters while

the other K are receivers. Each single-antenna transmitter

is paired with a single-antenna receiver in a one-to-one map-

ping. Let define the set of all users by K = {1, . . . ,K}. We

denote the channel from k-th transmit node to j-th receive

node during time slot t by h
[t]
jk . The channel output of receiver

j over the t-th time slot is described as follows:

y
[t]
j =

K∑

k=1

h
[t]
jkx

[t]
k + z

[t]
j (1)

wherex
[t]
k is the input signal of the k-th transmitter at time slot

t, and z
[t]
j is independent and identically distributed (i.i.d.)

circularly symmetric complex Gaussian noise at the j-th re-

ceiver at time slot t, which has mean zero and variance σ2
z ,

i.e., z
[t]
j ∼ CN

(
0, σ2

z

)
.

The usefulness of symbol extensions for constant channel

coefficients has been investigated in [7] for MIMO X chan-

nel. Here the idea of symbol extension is used to develop the

proposed method. The supersymbol is defined as the T sym-

bols transmitted over T time slots. We call this the T symbol

extension of the channel. For a symbol extension of length

T , the effective T ×T channel from k-th transmit node to the

j-th receive node can be shown by

Hjk = diag
(
h
[T (t−1)+1]
jk , . . . , h

[Tt]
jk

)
(2)

where “diag” represents the diagonal matrix. In the case of

constant channels, we have Hjk = hjk · IT×T .

In the extended channel, the signal vector at the j-th re-

ceive node can be expressed as

Y
[t]
j =

K∑

k=1

HjkX
[t]
k + Z

[t]
j (3)

where X
[t]
k is a T -vector representing the T symbol extension

of the transmitted symbol x
[t]
k . i.e.,

X
[t]
k ,

(
x
[T (t−1)+1]
k , . . . , x

[Tt]
k

)⊤

(4)

where the superscript (·)⊤ denotes the transpose of a vector or

matrix. Similarly Y
[t]
j andZ

[t]
j represents T symbol extension

of y
[t]
j and z

[t]
j , respectively. Further, X

[t]
k can be shown as

X
[t]
k = Vks

[t]
k (5)

where Vk ∈ CT×dk is the precoding matrix of user k, dk is

the number of independent streams into which the message of

transmitter k is encoded, and s
[t]
k ∈ Cdk×1 is the intended data

vector for receiver k, thus
(
d1

T
, . . . , dK

T

)
can be defined as the

set of achievable DoF tuple, and therefore the total number of

DoF of the network is equal to d1+···+dK

T
.

3. IA FOR TIME-VARYING CHANNELS

In this section, the IA conditions for time-varying channels

are presented. In this case, all channel coefficients h
[t]
jk can be

modeled by i.i.d. complex Gaussian random variables with

zero mean and unit variance.

Let N = (K − 1) (K − 2)− 1. In [2], it has been shown

that
(
d1

T
, . . . , dk

T

)
lies in the DoF region of the K-user inter-

ference channel for any n ∈ N where

d1 = (n+ 1)
N

dk = nN , ∀k ∈ K\ {1}
(6)

and T = (n+1)N +nN is the symbol extension of the chan-

nel. In other words,
(
d1 = (n+ 1)N , d2 = nN , . . . , dK = nN

)

lies in the DoF region of the T = (n + 1)N + nN symbol

extension of the original channel. In this case, the precoding

matrices can be defined as [2]

V1 =








∏

j,k∈K\{1}
j 6=k,(j,k) 6=(2,3)

T
m
j,k


 · 1T

∣∣∣∣∣∣∣∣
∀m ∈ [0, 1, . . . , n]




(7)

V3 =



H

−1
23 H21




∏

j,k∈K\{1},j 6=k,(j,k) 6=(2,3)

T
m
j,k


 · 1T

∣∣∣∣∣∣
∀m ∈ [0, 1, . . . , n− 1]





(8)

Vk = H
−1
1k H13V3 ∀k ∈ K\ {1, 3} (9)

where {·}, in equations (7) and (8), denotes the set of (n +
1)N column vectors for V1, and nN column vectors for V3,

Tjk (j, k ∈ K\ {1} , j 6= k, (j, k) 6= (2, 3)) is equal to

Tjk = H
−1
j1 HjkH

−1
1k H13H

−1
23 H21 (10)

and 1T is the all one vector of size T . To further proceed, the

following facts are considered:

Fact 1 If all diagonal elements of even one of Tjk would be

the same, i.e., Tjk be a scaled identity matrix, then precoding

matrices Vk, k ∈ K are rank deficient 1 [8].
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Fact 2 If the diagonal elements of each matrix Tjk are drawn

i.i.d. from a continuous distribution, then all Vk, k ∈ K are

full column rank almost surely [2].

Remark 1 For constant interference channels, each time-

extended channel matrix Hjk becomes a scaled identity ma-

trix, and this causes each Tjk in (10) to be turned into

a scaled identity matrix too. Therefore, based on Fact 1,

for constant interference channels, the precoding matrices

become rank deficient, and thus the proposed method of

Cadambe–Jafar is not effective for these types of channels.

However, in this paper and in the following section, an idea

of doubly layered signaling is presented which enables us to

build a virtual time-varying channel out of a constant chan-

nel, and consequently we can use Cadambe–Jafar scheme to

approach K/4 DoF.

4. DOUBLY LAYERED SIGNALING FOR

CONSTANT CHANNELS

One method to make the constant channel time-varying is to

fluctuate the coding at all nodes with an arbitrarily gain. Let

α
[τ ]
k denote the gain of the k-th transmit node at a specific time

slot τ , and β
[τ ]
j represent the gain of the j-th receive node at

the same time slot, with this assumption that all α
[τ ]
k and β

[τ ]
j

are drawn i.i.d. from a continuous distribution. Moreover we

assume that all nodes have a knowledge about all values of

α
[τ ]
k and β

[τ ]
j .

We consider the duration of the symbol extension to be

twice as that of the time-varying scenario described in Sec-

tion 3, i.e., 2T symbol extension of the original channel. We

categorize the time slots as odd time slots (beginning from

2T (t − 1) + 1 with steps of length two) and even time slots

(beginning from 2T (t− 1) + 2 with steps of length two). In

this case, we can add the two consecutive time slots (including

one odd-indexed time slot with one even-indexed time slot) of

the doubly extended channel to from one virtual status of the

network. Note that during the two consecutive time slots of

this doubly extended channel, we send the same information.

So we still have T virtual statuses in total. Therefore the arti-

ficially built time-varying channel coefficients (related to one

virtual status of the network) can be described by

h̃
[τ ]
jk = β

[2τ−1]
j hjkα

[2τ−1]
k + β

[2τ ]
j hjkα

[2τ ]
k

= hjk

(
β
[2τ−1]
j α

[2τ−1]
k + β

[2τ ]
j α

[2τ ]
k

)

∀ T (t− 1) + 1 ≤ τ ≤ T t

(11)

where hjk is the constant channel coefficient and conse-

quently Hjk in (2) can now be written as

H̃jk = hjk · diag
(
β
[2T (t−1)+1]
j α

[2T (t−1)+1]
k + β

[2T (t−1)+2]
j

×α
[2T (t−1)+2]
k , . . . , β

[2Tt−1]
j α

[2Tt−1]
k + β

[2Tt]
j α

[2Tt]
k

)

(12)

1Matrix V ∈ Cp×q is rank deficient, if rank (V) < min (p, q).

Let define

A
o
k = diag

(
α
[2T (t−1)+1]
k , . . . , α

[2Tt−1]
k

)

A
e
k = diag

(
α
[2T (t−1)+2]
k , . . . , α

[2Tt]
k

)

B
o
j = diag

(
β
[2T (t−1)+1]
j , . . . , β

[2Tt−1]
j

)

B
e
j = diag

(
β
[2T (t−1)+2]
j , . . . , β

[2Tt]
j

)
(13)

then (12) can be expressed as

H̃jk = hjk

(
B

o
jA

o
k +B

e
jA

e
k

)
(14)

and Tjk in (10) can be written as

Tjk = h−1
j1 hjkh

−1
1k h13h

−1
23 h21

(
B

o
jA

o
1 +B

e
jA

e
1

)−1

×
(
B

o
jA

o
k +B

e
jA

e
k

)
(Bo

1A
o
k +B

e
1A

e
k)

−1
(Bo

1A
o
3 +B

e
1A

e
3)

× (Bo
2A

o
3 +B

e
2A

e
3)

−1
(Bo

2A
o
1 +B

e
2A

e
1)

(15)

Now in this case, the only combination of j and k that

makes Tjk a scaled identity matrix (or more precisely, an ex-

act identity matrix) is (j, k) = (2, 3), but since in the con-

struction of all matrices Vk, it has been assumed that (j, k) 6=
(2, 3), althoughTjk is still a diagonal matrix, it is not a scaled

identity matrix with probability one, as its diagonal elements

are distinct (due to being drawn i.i.d. from a continuous dis-

tribution); thus based on Fact 2, all precoding matrices Vk

that are built based on Tjk in (15) are all full column rank.

Remark 2 Note that if we only use Ak ∈ CT×T and Bj ∈
CT×T , i.e., we do not have to double the time extension and

then add up every two consecutive time slots, the equivalent

channel matrix would be H̃jk = BjAk instead of the one

in (14), and in this case, it is easy to verify that Tjk in (10)

becomes, once again, a scaled identity matrix.

Remark 3 In the doubly extended channel, if receive fluctu-

ation gains βj or transmit fluctuation gains αk become equal

to one, i.e., Ao
k = A

e
k = I or Bo

j = B
e
j = I, it is also easy to

show that Tjk in (15) becomes a scaled identity matrix.

5. IA WITH DOUBLY LAYERED SIGNALING

In Section 4, it has been shown that with deploying a

fluctuation-based coding at each node and using the idea

of doubly layered signaling across two consecutive time slots

of the doubly extended channel, it is possible to build matri-

ces Tjk such that they are not scaled versions of the identity

matrix anymore, and this leads to full column rank precoding

matrices Vk. In this section, one possible system description

for this doubly extended channel is provided.

Since we assume that we are sending the same informa-

tion during the two consecutive time slots of the doubly ex-

tended channel, for a virtual time slot T (t− 1)+1 ≤ τ ≤ T t
related to the two consecutive time slots 2τ − 1 and 2τ , the

received signals of receiver j are equal to
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ŷ
[2τ−1]
j =

K∑

k=1

hjkβ
[2τ−1]
j α

[2τ−1]
k x̂

[2τ−1]
k + β

[2τ−1]
j ẑ

[2τ−1]
j

(16)

ŷ
[2τ ]
j =

K∑

k=1

hjkβ
[2τ ]
j α

[2τ ]
k x̂

[2τ−1]
k + β

[2τ ]
j ẑ

[2τ ]
j (17)

Therefore the received signal of the j-th receiver related to

the 2T symbol extensions can be described as follows:

Ŷ
[t]
j =

K∑

k=1

Ĥ
[t]
jkX̂

[t]
k +

(
B

o
j ⊗K

o +B
e
j ⊗K

e
)
Ẑ
[t]
j (18)

such that

X̂
[t]
k = X

[t]
k ⊗ 12 = (Vk ⊗ 12) sk (19)

Ĥ
[t]
jk = hjk

((
B

o
jA

o
k ⊗K

o
)
+
(
B

e
jA

e
k ⊗K

e
))

(20)

where⊗ represents the Kronecker product, 12 denotes the 2×

1 column vector of all one, Ŷ
[t]
j and Ẑ

[t]
j designate the 2T ×

1 vectors of the received signal and additive white Gaussian

noise, respectively, where each element of Ẑ
[t]
j has mean zero

and variance σ2
z , i.e., Ẑ

[t]
j ∼ CN

(
0, σ2

zI
)
; also X

[t]
k is defined

in (4), and

K
o = diag (1, 0) K

e = diag (0, 1) (21)

Note that the fluctuation gains αk and βj may be drawn from

any continuous distribution, but for simplifying the system

description, we assume that βj are i.i.d Gaussian random vari-

ables with mean zero and variance 1
2 , i.e., βj ∼ CN

(
0, 12

)
,

since this assures that the final noise (resulted from adding

up every two consecutive received signals) would be a white

noise and its variance remains constant.

With respect to equations (16) and (17), the j-th receiver

adds every two consecutive time slots (which contain the

same information) as follows:

ŷ
[2τ−1]
j + ŷ

[2τ ]
j =

K∑

k=1

hjk

(
β
[2τ−1]
j α

[2τ−1]
k + β

[2τ ]
j α

[2τ ]
k

)

× x̂
[2τ−1]
k + β

[2τ−1]
j ẑ

[2τ−1]
j + β

[2τ ]
j ẑ

[2τ ]
j

(22)

thus receiver j considers the received signal associated with

the two consecutive time slots (or one virtual status of the

network) as ỹ
[τ ]
j = h̃

[τ ]
jkx

[τ ]
k + z̃

[τ ]
j (23)

where ỹ
[τ ]
j = ŷ

[2τ−1]
j + ŷ

[2τ ]
j , x

[τ ]
k = x̂

[2τ−1]
k , and z̃

[τ ]
j =

β
[2τ−1]
j ẑ

[2τ−1]
j + β

[2τ ]
j ẑ

[2τ ]
j . Note that (23) is similar to (1),

but the time-varying channel coefficients h
[t]
jk have been re-

placed by the artificially built time-varying channel coeffi-

cients h̃
[τ ]
jk in (11). Also note that since the noise compo-

nents of Ẑ
[t]
j and also βj are i.i.d Gaussian random variables,

the incurred noise z̃
[τ ]
j is still white; plus, since we assumed

that βj ∼ CN
(
0, 12

)
, the variance of z̃

[τ ]
j in (23) remains un-

changed, i.e., z̃
[τ ]
j ∼ CN

(
0, σ2

z

)
. From the matricial notation

perspective, we can write (23) as

Ỹ
[t]
j =

K∑

k=1

H̃jkX
[t]
k + Z̃

[t]
j (24)

where X
[t]
k and H̃jk have been defined in (4) and (14), respec-

tively, and we have Z̃
[t]
j ∼ CN

(
0, σ2

zI
)
.

Note that (24) resembles (3) which is related to time-

varying channels, therefore the precoding matrices Vk can be

built via replacing Hjk by the artificially built time-varying

channel matrices H̃jk defined in (14), thus based on discus-

sions in Section 4, all Vk are full column rank and conse-

quently satisfy the interference alignment conditions. Finally,

the actual precoders can be built via V̂k = Vk ⊗ 12. The

following theorem is the result of this paper:

Theorem 1 Interference alignment with doubly layered sig-

naling could achieve K/4 DoF for K-user constant SISO in-

terference channels which implies the achievability of at least

1.25 DoF when K ≥ 5.

Proof 1 It has been shown that
(
(n+ 1)N , nN , . . . , nN

)

lies in the degrees of freedom region of the (n + 1)N +
nN symbol extension of the time varying channel, i.e.,(

(n+1)N

(n+1)N+nN , nN

(n+1)N+nN , . . . , nN

(n+1)N+nN

)
is the achiev-

able set of DoF tuple [2]. Since the virtual time varying chan-

nel is built out of a constant channel by doubling the symbol

extensions and then sending the same information during the

two consecutive time slots of the doubly extended channel,

thus
(

(n+1)N

2((n+1)N+nN )
, nN

2((n+1)N+nN )
, . . . , nN

2((n+1)N+nN )

)
is

the achievable set of DoF tuple for the proposed scheme,

and the total number of DoF of the network is equal to

D =
(n+ 1)N + (K − 1)nN

2 ((n+ 1)N + nN )
, therefore lim

n→∞
D = K/4. �

Note that for K = 5, we have N = 11. If we set n =
82, then D ≈ 1.2001, which is more than 1.2 DoF achieved

in [5]. In this case, the actual size of channel matrices is:

2((n+ 1)N + nN )× 2((n+ 1)N + nN ) ≈
(
4.83× 1021

)
×(

4.83× 1021
)
, which prohibits us from showing numerical

results.

6. CONCLUSION

In this paper, we proposed a framework for K-user constant

SISO interference channels by exploiting symbol rotations

and Cadambe–Jafar symbol-extension interference alignment

scheme to settle the Høst-Madsen–Nosratinia conjecture in

negative. The main idea of the proposed scheme is to build

a virtual time-varying channel out of a constant channel and

then to use the Cadambe–Jafar symbol-extension linear inter-

ference alignment scheme to achieve the DoF greater than 1.

However, as we have to retransmit the signals twice to achieve

full-rank precoding matrices, we can only achieve K/4 DoF.

This means that wheneverK ≥ 5, the proposed method could

achieve at least 1.25 DoF.
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