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ABSTRACT

Block diagonalization (BD) is a low-complexity linear pre-
coding technique for multi-user MIMO (MU-MIMO) down-
link systems, which can provide a performance that is close
to the MU-MIMO capacity. However, imperfect channel state
information (CSI) will result in a degraded performance of the
BD scheme. Thus, studying the performance of BD under im-
perfect CSI is crucial for a practical system design since the
robustness of BD to real-world imperfections should be veri-
fied. In this paper we apply a first-order perturbation analysis
of the SVD to derive analytic expressions of the signal to in-
terference plus noise ratio (SINR) for each subchannel of each
UT using BD in presence of imperfect CSI. To demonstrate
the usefulness of these expressions, a robust BD technique
via worst SINR maximization is developed. Numerical sim-
ulations show the accuracy and the usefulness of the derived
analytical results.

Index Terms— Block diagonalization, MU-MIMO, per-
turbation analysis, convex optimization

1. INTRODUCTION AND THE STATE OF THE ART

Multi-user MIMO (MU-MIMO) downlink precoding is one
of the major techniques to meet the demands of higher data
rates in future wireless networks. The block diagonalization
(BD) scheme is a linear precoding algorithm, which first nulls
the multi-user interference (MUI) and then optimizes the per-
formance of each user terminal (UT) separately [1]. BD is
well recognized because it not only simplifies the system de-
sign but also has a close to optimum performance [2]. How-
ever, in practice perfect channel state information (CSI) is
impossible to obtain due to channel estimation errors, quan-
tization loss, high mobility, etc. BD with imperfect CSI will
result in residual interference (including both MUI and co-
channel interference (CCI)) and thus a degraded performance.
As a result, the required quality of service of the UTs might
not be met. This phenomenon is critical for wireless networks
which use the BD technique. Thus, it is essential to study the
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sensitivity / analytic performance of BD under realistic con-
ditions, i.e., imperfect CSI. Such a performance analysis not
only illustrates whether BD is robust to imperfections but may
also help us to adapt BD for real-world applications, i.e., to
design a robust version of BD. The performance of BD in the
presence of imperfect CSI has been studied in [3] and [4]. In
[3] an upper bound of the rate loss due to limited feedback is
derived, where long-term second-order statistics of the simu-
lated Rayleigh fading channels [5] and random matrix theory
[6] are used in the derivation. This upper bound is further
applied in [4] to study the performance of BD using delayed
CSI. Nevertheless, analytic expressions instead of an upper
bound for BD using imperfect CSI have not been derived prior
to our work.

In BD the SVD is used to project the channel of inter-
est into the null space of the other UTs’ channels and is also
used to optimize the performance of each UT after the pro-
jection [1]. Thus, to analyze the effects of the perturbed sub-
spaces for BD due to imperfect CSI, the perturbation anal-
ysis of the SVD in [7], [8], and [9] can be used. This per-
turbation analysis of SVD has been widely used to study the
analytic performance of the subspace-based parameter esti-
mation schemes, e.g., [7], [10], and [11]. However, it has
not been applied in the performance analysis of MIMO tech-
niques other than [12]. In [12] the analytic performance of a
point-to-point MIMO system in the presence of imperfect CSI
is studied, where the first-order SVD perturbation analysis in
[9] is used since in contrast to [8] it also takes into account
the contribution of the signal subspace to the perturbed sub-
spaces. Therefore, we also use the perturbation analysis in [9]
for our analysis.

In this paper, we derive closed-form SINR expressions of
each subchannel of each UT with respect to an instantaneous
channel realization when using imperfect CSI in BD based
precoding techniques. The derivations in Section 3 are based
on the first-order SVD perturbation analysis in [9]. As an
example for the usefulness of these newly derived analytic
performance of BD, we develop a robust BD technique via
worst SINR maximization in Section 4. The simulation re-
sults in Section 5 demonstrate the accuracy and usefulness of
the derived analytic results.
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2. SYSTEM MODEL

We consider a MU-MIMO downlink system where a multi-
antenna BS transmits data to K multi-antenna UTs. The BS
has N transmit antennas. For notional simplicity, each UT has
M receive antennas and we have N ≥ K ·M . We assume per-
fect synchronization and frequency flat quasi-static block fad-
ing channel. The channel between the BS and the kth UT is
denoted as Hk ∈ C

M×N (k ∈ {1, · · · ,K}). Define the SVD

of H̃k = ŨkΣ̃k

[

Ṽs,k Ṽn,k

]H

, where H̃k ∈ C
(K−1)M×N

contains all channel matrices except for Hk [1]. Let the
rank of H̃k be r̃k. Then the last (N − r̃k) right singular
vectors Ṽn,k form an orthonormal basis for the null space of

H̃k. Define the SVD of HkṼn,k = ŪkΣ̄k

[
V̄s,k V̄n,k

]H
,

where V̄s,k ∈ C
M×r̄k contains the dominant r̄k right sin-

gular vectors which correspond to the r̄k non-zero singu-
lar values. Let Hk be the channels known at the BS and
Hk +∆Hk denote the actual MIMO channels, where ∆Hk

is a zero-mean circularly symmetric complex perturbation
with covariance matrix C∆Hk

= σ2
pIM . After apply-

ing the BD based design at the BS, the transmitted signal

vector is expressed as x =
∑K

k=1 Ṽn,kV̄s,kP
1

2

k sk where
the elements of the data vectors sk ∈ C

r̄k are i.i.d. with
zero mean and unit variance [1]. The diagonal matrices
Pk = diag{pk} = diag{pk,1, pk,2, · · · , pk,r̄k} allocate
power onto each subchannels of each UT in the system and
they are designed such that the transmit power constraint at
the BS E{‖x‖2} = PT is fulfilled.

To design the decoding matrix, each UT estimates the ef-
fective channel Ĥk = (Hk + ∆Hk)Ṽn,k using a channel
estimation algorithm. If we assume Ĥk is estimated without
errors, the decoding matrix at the kth UT is chosen as ÛH

s,k,

which contains the first r̄k left singular vectors of Ĥk and is
defined in Section 3 (cf. equation (2)). Finally, the received
signal at the kth UT is written as:

yk = ÛH
s,k

[

(Hk +∆Hk)Ṽn,kV̄s,kP
1

2

k sk
︸ ︷︷ ︸

perturbed signal

+ (Hk +∆Hk)

K∑

ℓ=1
ℓ 6=k

Ṽn,ℓV̄s,ℓP
1

2

ℓ sℓ

︸ ︷︷ ︸

residual MUI

+nk

]

∈ C
r̄k (1)

where nk denotes the zero-mean circularly symmetric Gaus-
sian (ZMCSG) noise and E{nkn

H
k } = σ2

nIM , ∀k.

Given the system model with perturbation errors (1), the
perturbation analysis in [9] derives explicitly the perturbed
terms in the SVD of Ĥk, i.e., signal components and interfer-
ence components in our application, in terms of a first-order
expression of the perturbation error ∆Hk.

3. FIRST-ORDER PERTURBATION ANALYSIS

3.1. Derivation of the First Order Expressions

Following the perturbation analysis in [9], we compute the
SVD of Ĥk as

Ĥk = Ûs,kΣ̂s,kV̂
H
s,k = (Ūs,k +∆Ūs,k)

· (Σ̄s,k +∆Σ̄s,k)(V̄s,k +∆V̄s,k)
H (2)

Inserting (2) into the perturbed signal part of (1) and dropping
higher-order terms (i.e., 2nd-order and higher), we obtain

yS+CCI,k ≈ (Σ̄s,k +∆Σ̄s,k + Σ̄s,k∆V̄ H
s,kV̄s,k)P

1

2

k sk (3)

where Σ̄s,k = diag{σ̄k,1, σ̄k,2, · · · , σ̄k,r̄k}. If the perturba-
tion ∆Hk is assumed to be small enough, then we can apply
a similar derivation as in [9]. Afterwards, the matrices ∆Σ̄s,k

and ∆V̄s,k are obtained in terms of the perturbation ∆Hk as

∆Σ̄s,k = diag{∆σ̄k,1,∆σ̄k,2, · · · ,∆σ̄k,r̄k} (4)

where

∆σ̄k,i ≈
1

2
(ūH

k,i∆HkṼn,kv̄k,i + v̄H
k,iṼ

H
n,k∆HH

k ūk,i),

∆V̄s,k ≈ V̄s,kQ̄k + V̄n,kV̄
H
n,kṼ

H
n,k∆HH

k Ūs,kΣ̄
−1
s,k , (5)

and

Q̄k = D̄k⊙(V̄ H
s,kṼ

H
n,k∆HH

k Ūs,kΣ̄s,k+Σ̄s,kŪ
H
s,k∆HkṼn,kV̄s,k)

with

D̄k,i,j =

{

1/(σ̄2
k,j − σ̄2

k,i) i 6= j

0 i = j

and ⊙ denotes the Hadamard (element-wise) product. Insert-
ing (5) into (3) and using the fact that V̄ H

n,kV̄s,k = 0, equation
(3) is further simplified as

yS+CCI,k ≈ (Σ̄s,k +∆Σ̄s,k + Σ̄s,kQ̄
H
,k)P

1

2

k sk (6)

Similarly, the term of the residual MUI in (1) is expanded as

yMUI,k ≈ ÛH
s,k(Hk +∆Hk)

K∑

ℓ=1
ℓ 6=k

Ṽn,ℓV̄s,ℓP
1

2

ℓ sℓ

= (ŪH
s,k +∆ŪH

s,k)∆Hk

K∑

ℓ=1
ℓ 6=k

Ṽn,ℓV̄s,ℓP
1

2

ℓ sℓ

≈ ŪH
s,k∆Hk

K∑

ℓ=1
ℓ 6=k

Ṽn,ℓV̄s,ℓP
1

2

ℓ sℓ (7)

where the fact HkṼn,ℓ = 0, ∀ℓ is used in the derivation.
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3.2. Derivation of the Perturbed SINR

Given the first-order expression of (6) and (7), we derive the
effective SINR of each stream at each UT. Take the ith stream
of the kth UT as an example, we start with (6) which contains
the desired signal as well as the CCI caused by the perturba-
tion.

In equation (6) only the first and second term contribute
to the signal power since the third term has only zeros on the
main diagonal. The signal power is derived as:

E{|yS,k,i|2} = E{|Σ̄k,i,i
√
pk,isk,i +∆Σ̄k,i,i

√
pk,isk,i|2}

= (σ̄2
k,i + E{|∆σ̄k,i|2})pk,i

= (σ̄2
k,i +

1

4
E{2|ūH

k,i∆HkṼn,kv̄k,i|2})pk,i

= (σ̄2
k,i +

1

2
((Ṽn,kv̄k,i)

T ⊗ ūH
k,i)

·C∆Hk
((Ṽn,kv̄k,i)

∗ ⊗ ūk,i))pk,i

= (σ̄2
k,i +

1

2
σ2
p)pk,i (8)

where the properties that vec{AXB} = (BT ⊗A)vec{X}
and E{vec{∆Hk}vec{∆Hk}H} = C∆Hk

are used.
To derive the CCI power, we define ei as the ith column

of an identity matrix and aH
k,i = eHi Q̄

H
k . Then we find

E{|yCCI,k,i|2} = E{|(Σ̄s,kQ̄
H
k P

1

2

k sk)i|2}
= σ̄2

k,iE{|eHi Q̄H
k P

1

2

k sk|2}

= σ̄2
k,iE{|aH

k,iP
1

2

k sk|2}

= σ̄2
k,iE{|vec{aH

k,i}Tvec{P
1

2

k sk}|2}
= σ̄2

k,iE{Tr{vec{aH
k,i}∗

· vec{aH
k,i}T}}Pk (9)

where the property Tr{AB} = Tr{BA} is applied. Note
that the expectation operates on both sk and ∆Hk. Now we
compute E{Tr{vec{aH

k,i}∗vec{aH
k,i}T}}.

Noticing that ei(A ⊙ B) = (eiA) ⊙ (eiB), we further
expand aH

k,i as

aH
k,i = (d̄H

k,i ⊙ (v̄H
s,k,iṼ

H
n,k∆HH

k Ūs,kΣ̄s,k

+ σ̄H
s,k,iŪ

H
s,k∆HkṼn,kV̄s,k)) (10)

where d̄k,i, v̄s,k,i, and σ̄s,k,i are the ith columns of D̄k,
V̄s,k, and Σ̄s,k, respectively. Utilizing vec{A ⊙ B} =
diag{vec{A}}vec{B}, we get

vec{aH
k,i} = diag{vec{d̄H

k,i}}vec{v̄H
s,k,iṼ

H
n,k∆HH

k

· Ūs,kΣ̄s,k + σ̄H
s,k,iŪ

H
s,k∆HkṼn,kV̄s,k}

Again applying vec{AXB} = (BT ⊗ A)vec{X}, we ob-
tain

E{vec{aH
k,i}∗vec{aH

k,i}T} = σ2
pdiag{vec{d̄H

k,i}}2

· (Σ̄2
s,k + σ̄2

k,iIM ) (11)

Inserting (11) into (9) and after some algebraic manipulations,
the co-channel interference power is expressed as

E{|yCCI,k,i|2} = σ̄2
k,iσ

2
p

r̄k∑

j=1
j 6=i

(σ̄2
k,j + σ̄2

k,i)pk,j

(σ̄2
k,j − σ̄2

k,i)
2

(12)

Similarly, the residual MUI power is computed as:

E{|yMUI,k,i|2} = E{|ūH
s,k,i∆Hk

K∑

ℓ=1
ℓ 6=k

Ṽn,ℓV̄s,ℓP
1

2

ℓ sℓ|2}

=

K∑

ℓ=1
ℓ 6=k

E{|ūH
s,k,i∆HkṼn,ℓV̄s,ℓP

1

2

ℓ sℓ|2}

= σ2
p

K∑

ℓ=1
ℓ 6=k

r̄ℓ∑

ĩ=1

pℓ,̃i (13)

Given (8), (12), and (13), the analytic expression of the
SINR of the ith subchannel of the kth UT becomes

SINRk,i =
E{|yS,k,i|2}

E{|yCCI,k,i|2}+ E{|yMUI,k,i|2}+ σ2
n

=
(σ̄2

k,i +
1
2σ

2
p)pk,i

σ̄2
k,iσ

2
p

r̄k∑

j=1
j 6=i

(σ̄2
k,j + σ̄2

k,i)pk,j

(σ̄2
k,j − σ̄2

k,i)
2

+ σ2
p

K∑

ℓ=1
ℓ 6=k

r̄ℓ∑

ī=1

pℓ,̄i + σ2
n

4. WORST SINR MAXIMIZATION

In this section, we demonstrate a possible application of the
derived expressions. More specifically, we develop a power
allocation scheme which maximizes the minimum per-stream
SINR after applying BD. Such a design criterion is common
for a MIMO system, e.g., [13]. Define p̃k = [pT

k ,0
T]T ∈

R
M
+ and then p = [p̃T

1 , · · · , p̃T
K ,0T]T ∈ R

N
+ . Mathemati-

cally, we solve the following problem:

max
p

min
∀k,i

SINRk,i

s.t. 1
Tp ≤ PT (14)

or equivalently

max
p,t

t

s.t. 1
Tp ≤ PT,

(tbTk,i − aT
k,i)p ≤ −tσ2

n, ∀k, i (15)

where the mth elements (m ∈ {1, · · · , N}) ak,i,m of ak,i ∈
R

N
+ and bk,i,m of bk,i ∈ R

N
+ are defined as

ak,i,m =

{

σ̄2
k,i +

1
2σ

2
p m = i+ (k − 1) ·M

0 otherwise
(16)
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and

bk,i,m =







σ̄2
k,iσ

2
p

(σ̄2

k,j+σ̄2

k,i)

(σ̄2

k,j
−σ̄2

k,i
)2

m = j + (k − 1) ·M
σ2
p m = ĩ+ (ℓ− 1) ·M

0 otherwise,
(17)

respectively. Moreover, the index {i, j} ∈ [1, · · · , r̄k] and
we have i 6= j. The index ℓ ∈ [1, · · · ,K] (ℓ 6= k) and ĩ ∈
[1, · · · , r̄ℓ].

In case of the non-robust design, i.e., the perturbation is
not considered in the SINR (σ2

p = 0), problem (15) degrades
into the following linear programming problem which can be
solved using the interior-point algorithm in [14]

max
p,t

t

s.t. 1
Tp ≤ PT,

aT
k,ip− tσ2

n ≥ 0, ∀k, i (18)

In case of the robust design, i.e., σ2
p 6= 0, we notice

that for a fixed t, problem (15) is still a linear programming
problem which can also be solved using the interior-point al-
gorithm in [14]. Thereby, it is straightforward to apply the
bisection search method where a linear programming prob-
lem is solved at each step. If we further define tlb = 0 and
tub = max∀k,i((a

T
k,iei)PT/σ

2
n), i.e., the total transmit power

is allocated to a stream which has the best channel condition,
a suitable search interval for the proposed bisection search al-
gorithm is given by [tlb, tub].

5. SIMULATION RESULTS

In this section, the accuracy of the derived expressions and
the performance of the proposed robust design are evaluated
via Monte-Carlo simulations. For this purpose, we consider
a system with 2 UTs, where each UT has 2 antennas and the
BS has 4 antennas. Two uncorrelated 2 × 4 channels Hk

are selected such that vec{Hk} ∼ CN{0, I8}. The total
transmit power PT is fixed to unity and a noise variance of -30
dB with respect to PT is assumed. All the simulation results
are obtained by averaging over 1000 perturbation realizations
of vec{∆Hk} ∼ CN (0, σ2

pI8).
In Fig. 1 we compare the per-stream SINR values gener-

ated through a Monte Carlo method (denoted as “Empirical”)
with the analytic first-order SINR approximations using the
SVD perturbation analysis in [9] (denoted as “Analytic”). The
transmit power is uniformly allocated to all the subchannels.
Obviously, the derived first-order expressions provide SINR
estimates with good accuracy and thus are suitable for further
applications, e.g., a worst SINR maximization.

Fig. 2 compares the achievable minimum per-stream
SINR with the robust design (denoted as “Robust Design”)
and without the robust design (denoted as “Non-Robust De-
sign”). Compared to the case with perfect CSI, a space for
further improvements still exists as the perturbation power
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achieved with and without a robust design as a function of
the perturbation power σ2
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increases. Nevertheless, compared to the case without the
robust design, a significant gain in terms of the achievable
minimum SINR is already obtained by using the robust de-
sign especially when the perturbation power is high.

6. CONCLUSION

Given imperfect CSI in a MU-MIMO downlink system using
the BD based precoding technique, we have derived a first-
order per-stream average SINR approximation for each UT.
The accuracy of the derived expressions is verified via Monte-
Carlo simulations. Furthermore, a robust design via worst
SINR maximization is proposed based on the derived SINR
expressions to demonstrate the possible application of these
newly derived analytic results. Numerical results show that a
substantial gain is obtained via the proposed robust design.
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