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ABSTRACT

This paper considers robust codebook-based downlink beamforming

(i.e., single-layer precoding), where the beamformer of each user is

chosen from a fixed beamformer codebook defined, e.g., in LTE and

LTE-A. Admission control and power allocation are embedded in

the precoding vector selection procedure. The objective is to max-

imize the system utility, defined as the revenue gained from admit-

ting users minus the cost for the transmitted power of the base sta-

tion. We adopt the quality-of-service constrained approach and the

robustness against channel covariance estimation errors is realized

with worst-case design. The robust codebook-based beamforming

problem, which is a bi-level mixed integer program, is converted into

a more tractable mixed integer second-order cone program. Tech-

niques are proposed to customize the convex continuous relaxation

based branch-and-cut algorithm to compute the optimal solutions.

A low-complexity inflation procedure is also developed to compute

the near-optimal solutions for practical applications. Numerical ex-

amples show that the gap between the average number of admitted

users achieved by the fast inflation procedure and that of the optimal

solutions is less than 11.6% for all considered simulation settings.

Further, the inflation procedure yields optimal solutions in 88% of

the Monte Carlo runs under specific parameter settings.

Index Terms— Codebook-based Precoding, Robustness, Mixed

Integer Conic Programming, Fast Near-Optimal Algorithm

1. INTRODUCTION

Downlink transmit beamforming, in which multiple users are simul-

taneously served on the same time and frequency resource, can sig-

nificantly enhance spectrum efficiency [1–22]. A common approach

in the literature consists in the quality-of-service (QoS) constrained

design, in which the total transmitted power of the base station (BS)

is minimized under the individual received signal-to-interference-

plus-noise-ratio (SINR) constraints (i.e., the QoS constraints) of

the mobile stations (MSs). Downlink beamformer design requires

the channel state information (CSI) of the MSs, in terms of either

instantaneous channel vectors in slow-fading scenarios or channel

covariance matrices in fast-fading scenarios, to be known at the

BS [1–8]. However, it is difficult to obtain perfect CSI at the BS

in practice due to limited resources available for pilot signaling and

CSI feedback. To achieve robustness against CSI errors in the QoS-

constrained beamformer design, worst-case robust beamforming has

been proposed and intensively studied (see, e.g., [1, 9–16]).

The conventional [1–8] and the worst-case robust beamforming

problems [1, 9–16] can easily become infeasible when the number

of admitted MSs is large and/or the SINR targets of the admitted
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MSs are high. In this case, user admission control mechanisms

need to be applied to schedule a subset of the MSs to be served by

the BS in a given time-slot, as investigated, e.g., in [17–22]. To

reduce the overhead for signaling the beamformers, codebook-based

downlink beamforming is introduced in 4G wireless standards, e.g.,

LTE-A [23–25], and has been studied in prior works [26, 27]. In

codebook-based beamforming [23–27], the beamformer of each MS

is chosen from a predefined precoding vector codebook known to

both the BS and the MSs. Since there are only finite precoding vec-

tors (i.e., finite predefined transmit beamformers) available, in order

to ensure feasibility, a suitable admission control mechanism is in-

dispensable in the codebook-based beamforming problems [23–27].

However, to our best knowledge, robust codebook-based downlink

beamforming with admission control and power allocation, has not

yet been investigated in the literature due to the tremendous compu-

tational complexity that is involved.

We consider in this paper the robust codebook-based downlink

beamforming (RCB) problem, with admission control and power

allocation embedded in the precoding vector assignment proce-

dure. The RCB problem is firstly stated as a bi-level mixed integer

program (BL-MIP) [28]. Similar to [9–12], by transforming the

inner optimization problems in the worst-case SINR constraints

into independent convex semidefinite programs (SDPs) and apply-

ing the Lagrange duality theory [29] to the resulting inner SDPs,

we convert the RCB problem into a more structured mixed integer

second-order cone program (MI-SOCP) [30]. Based on the de-

veloped MI-SOCP formulation, we introduce several techniques to

customize the convex continuous relaxation based branch-and-cut

(BnC) algorithm [30–33] implemented, e.g., in the MI-SOCP solver

CPLEX [31], to compute the optimal solutions of the RCB problem,

which can be used as benchmarks to evaluate the performance of the

proposed low-complexity algorithms that are suitable for practical

applications. A fast inflation procedure is developed, which yields

near-optimal solutions of the RCB problem with very low compu-

tational complexity. As an illustrative example, the RCB problem

is configured to maximize the number of admitted users in the sim-

ulations. Numerical results show that the gap between the average

number of admitted users achieved by the inflation procedure and

that of the optimal solutions is less than 11.6% for all parameter

settings, and under certain conditions the inflation procedure can

yield optimal solutions in up to 88% of the Monte Carlo runs.

2. RELATION TO PRIOR WORK

This paper addresses the robust codebook-based downlink beam-

forming problem, together with admission control and power allo-

cation, using a novel MI-SOCP framework. Prior works on con-

ventional and codebook-based beamforming [2–16, 26, 27] did not

consider user admission control, and the existing contributions on

joint beamforming and admission control [17–22] did not consider

robust design or codebook-based beamforming.
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3. SYSTEM MODEL

Consider the downlink of a cellular network with one BS equipped

with M transmit antennas, and K single-antenna MSs. We denote

hk ∈ C
M×1 and wk ∈ C

M×1 as the frequency-flat channel vector

and the beamforming weight vector, respectively, of the kth MS,

∀k ∈ K , {1, 2, · · · ,K}. The received signal yk ∈ C at the kth

MS can be written as

yk = h
H
k wkxk +

K∑

j=1,j 6=k

h
H
k wjxj + zk,∀k ∈ K (1)

with xk ∈ C denoting the normalized data symbol, i.e., E
{
|xk|2

}
=

1, of the kth MS, and zk ∈ C representing the additive Gaussian

noise at the kth MS, with zero mean and variance σ2
k, ∀k ∈ K.

In this paper, we consider codebook-based beamforming, as

defined in the wireless standards, e.g., LTE-A [23–25], where the

beamforming direction wk/‖wk‖2 is chosen as one of the fixed

precoding vectors in the beamformer codebook B that consists of L
precoding vectors, i.e., B , {v1, v2, · · · , vL}, with vl ∈ C

M×1

and ‖vl‖2 = 1, ∀l ∈ L , {1, 2, · · · , L}. To model the precod-

ing vector assignment procedure, we introduce the binary variable

bk,l ∈ {0, 1} to indicate with bk,l = 1 that the lth precoding vector

vl is assigned to the kth MS, and bk,l = 0 otherwise. We further

introduce the variable pk,l ≥ 0 to model the power allocated to the

lth precoding vector for the kth MS, ∀k ∈ K, ∀l ∈ L. Since at

most one precoding vector shall be assigned to a MS in single-layer

precoding, we have
L∑

l=1

bk,l ≤ 1, ∀k ∈ K (2)

0 ≤ pk,l ≤ bk,lP
(MAX), ∀k ∈ K, ∀l ∈ L (3)

K∑

k=1

L∑

l=1

pk,l ≤ P (MAX)
(4)

wk =

L∑

l=1

√
pk,lvl,∀k ∈ K (5)

where the constant P (MAX) denotes the transmission power budget

of the BS, and Eq. (4) represents the per-BS sum-power constraint.

Eq. (3) implements the so-called big-M method [32, 33] to ensure

that when bk,l = 0, we have pk,l = 0. Note that if
∑

l=1 bk,l = 0,

i.e., if no precoding vector is assigned to the kth MS, the kth MS

is not admitted. Hence, admission control is embedded in the pre-

coding vector assignment procedure via the multiple-choice con-

straints (2). Assuming that the data symbols of the MSs are mutually

independent and independent from the noise, the average received

SINR at the kth MS, denoted by SINRk, under single-user detection

can then be expressed as (see, e.g., [1–3, 9–13])

SINRk ,
wH

k Rkwk∑
j=1,j 6=k

wH
j Rkwj + σ2

k

=

∑L

l=1 pk,lTr{RkVl}∑K

j=1,j 6=k

∑L

l=1 pj,lTr{RkVl}+ σ2
k

, ∀k ∈ K (6)

with the matrix Rk ∈ C
M×M representing the channel covariance

matrix (CCM) of the kth MS, the operation Tr{·} denoting the trace

of a matrix, the constant matrix Vl ∈ C
M×M defined as

Vl , vlv
H
l � 0,∀l ∈ L (7)

and to obtain Eq. (6), we have used the fact that

w
H
j Rkwj =

L∑

l=1

pj,lTr{RkVl}, ∀j, k ∈ K (8)

which hold because of Eqs. (2), (3), (5), and (7).

Due to limited channel training and/or feedback resources [1, 2,

9–16], the true CCM Rk is usually not available at the BS, and only

the estimated CCM of the kth MS, denoted by R̂k ∈ C
M×M , is

known to the BS. In practical systems, the estimated CCM R̂k is

generally different from the true CCM Rk. Following the approach

of [1, 2, 9–16], we model in this paper the estimated CCM R̂k as

R̂k = Rk +∆k,∀k ∈ K (9)

where the matrix ∆k ∈ C
M×M denotes the estimation error in the

estimated channel covariance matrix R̂k . We know from practical

considerations that the matrices Rk and R̂k are positive semidefi-

nite, i.e., Rk � 0 and R̂k � 0, and the mismatch matrix ∆k is

Hermitian. It is commonly assumed in the literature that the Frobe-

nius norm of the error matrix ∆k is upper bounded by a known

constant εk ≥ 0 (see, e.g., [1, 2, 9–16]), i.e.,

‖∆k‖F ≤ εk,∀k ∈ K. (10)

We remark that the framework proposed in the following sec-

tions can also accommodate other robust design approaches with

different channel uncertainty models.

4. PROBLEM FORMULATIONS

4.1. Problem Statement

In this paper, we consider the problem of precoding vector as-

signment for the K MSs to maximize the system utility function

f ({bk,l}, {pk,l}), which is defined as

f ({bk,l}, {pk,l}) ,
K∑

k=1

βk

L∑

l=1

bk,l − ρ
K∑

k=1

L∑

l=1

pk,l (11)

where the constant βk > 0 denotes the revenue that is gained

from admitting the kth MS, and the constant ρ > 0 represents the

expense-per-watt for the total transmitted power of the BS. Sim-

ilarly as in the QoS-constrained design [1–22], if the kth MS is

admitted, then the received SINR of the kth MS must exceed a

prescribed threshold Γ
(MIN)
k to guarantee the QoS that the kth MS

is subscribed to. To achieve robustness against the channel covari-

ance estimation errors {∆k,∀k ∈ K}, we adopt the worst-case

design approach [9–16]. Specifically, we define the following SINR

constraints for the K MSs:(
min

∆k∈Ek

SINRk

)
≥ Γ

(MIN)
k

L∑

l=1

bk,l,∀k ∈ K (12a)

Ek ,

{
∆k|Rk = R̂k −∆k � 0, and ‖∆k‖2F ≤ ε2k

}
(12b)

where the expression of SINRk is given in Eq. (6).

With the worst-case SINR constraints in Eq. (12), the RCB prob-

lem of interest can be stated as

Ψ(bmi)
, max

{bk,l,pk,l}
f({bk,l}, {pk,l}) (13a)

s.t. (2) – (4), (12a), and (12b) (13b)

bk,l ∈ {0, 1}, ∀k ∈ K,∀l ∈ L. (13c)

The RCB problem (13) contains the inner optimization prob-

lems in the SINR constraints (12) and the outer optimization prob-

lem (13). Hence, the RCB problem (13) represents a BL-MIP [28],

which is generally intractable due to the inner optimization step (12)

and the integer constraints (13c) [28]. To facilitate the development

of efficient numerical algorithms, we derive in the next subsection

an equivalent MI-SOCP formulation of the RCB problem (13).
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4.2. A MI-SOCP Formulation of the RCB Problem

The main difficulty of problem (13) stems from the inner optimiza-

tion problems (12), i.e., the worst-case SINR constraints, and the

integer constraints (13c). We develop here more tractable equiva-

lent reformulations of the SINR constraints (13c) and a MI-SOCP

formulation of the RCB problem (13). Note that the constraints

SINRk ≥ Γ
(MIN)
k

L∑

l=1

bk,l, ∀k ∈ K (14)

with SINRk given in Eq. (6), are equivalent to

( K∑

j=1,j 6=k

L∑

l=1

pj,lTr
{
(R̂k −∆k)Vl

}
+ σ2

k

)
Γ
(MIN)
k

L∑

l=1

bk,l

≤
L∑

l=1

pk,lTr
{
(R̂k −∆k)Vl

}
, ∀k ∈ K. (15)

The constraints (15) are difficult to handle as they involve the prod-

ucts of the continuous variables {pk,l, ∀k ∈ K,∀l ∈ L} and binary

variables {bk,l,∀k ∈ K,∀l ∈ L} in the left hand side of (15). De-

fine respectively the matrix Ak ∈ C
M×M and the constant Uk as

Ak ,
1

Γ
(MIN)
k

L∑

l=1

pk,lVl −
∑

j=1,j 6=k

L∑

l=1

pj,lVl, ∀k ∈ K (16)

Uk ,

(
max
l∈L

Tr
{
R̂kVl

}
+ εk

)
P (MAX) + σ2

k,∀k ∈ K. (17)

Then, we can adopt the big-M method [32, 33] to rewrite the con-

straints in Eq. (15) as

Tr
{
(R̂k −∆k)Ak

}
≥ σ2

k +
( L∑

l=1

bk,l − 1
)
Uk,∀k ∈ K. (18)

Note that Eq. (18) consists of only linear terms of the optimiza-

tion variables {bk,l, pk,l,∀k ∈ K,∀l ∈ L}. Further, comparing

Eq. (18) to Eq. (15), when
∑L

l=1 bk,l = 1, Eqs. (15) and (18) be-

come identical. On the other hand, when
∑L

l=1 bk,l = 0, we have∑L

l=1 pk,l = 0 due to Eq. (3) and thus the constraint correspond-

ing to the kth MS in Eq. (15) is automatically satisfied. Since the

constant Uk satisfies the property that

Uk ≥ max
∆k∈Ek

K∑

j=1,j 6=k

L∑

l=1

pj,lTr
{
(R̂k −∆k)Vl

}
+ σ2

k (19)

when
∑L

l=1 bk,l = 0, the constraint corresponding to the kth MS in

Eq. (18) is also automatically satisfied due to the big-M constant Uk.

As a result, under the multiple-choice constraints (2) and the binary

constraints (13c), Eqs. (15) and (18) are equivalent.

With Eq. (18), we can rewrite the SINR constraints (12) as(
min

∆k∈Ek

Tr
{
(R̂k −∆k)Ak

})
≥

σ2
k +

( L∑

l=1

bk,l − 1
)
Uk, ∀k ∈ K. (20)

Similar to [9–12], we treat the inner optimization problem cor-

responding to the kth MS in the left hand side of Eq. (20) as an

independent convex semidefinite program (SDP) given by

Φk , min
∆k

Tr
{
(R̂k −∆k)Ak

})
(21a)

s.t. R̂k −∆k � 0 (21b)

‖∆k‖2F ≤ ε2k. (21c)

Note that the SDP (21) is strictly feasible, e.g., ∆k = 0 is a

feasible solution. As a result, we can apply Lagrange duality the-

ory [29] to problem (21). Further, following a similar procedure as

in [9, 10], it can be proved that, after maximizing over the Lagrange

multiplier associated with the constraint (21c), the dual problem as-

sociated with the convex SDP (21) can finally be expressed as

Φk = max
Qk�0

−εk‖Ak −Qk‖F + Tr
{
R̂k(Ak −Qk)

}
(22)

where the matrix Qk � 0 represents the Lagrange multiplier

corresponding to the constraint (21b). With the dual problem (22)

of the SDP (21), we obtain the following equivalent formulations of

the worst-case SINR constraints in Eq. (20):(
max
Qk�0

−εk‖Ak −Qk‖F + Tr
{
R̂k(Ak −Qk)

})
≥

σ2
k +

( L∑

l=1

bk,l − 1
)
Uk,∀k ∈ K. (23)

We can then follow a similar argument as in [9, 10] with modi-

fications required for accommodating the integer variables to prove

that, without loss of optimality of the RCB problem (13), we can

choose Qk = 0, ∀k ∈ K, in Eq. (23). As a result, the RCB prob-

lem (13) can be equivalently rewritten as the following MI-SOCP:

Ψ(bmi) = max
{bk,l,pk,l}

f({bk,l}, {pk,l}) (24a)

s.t. (2) – (4) (24b)

− εk‖vec{Ak}‖2 + Tr
{
R̂kAk

}
≥

σ2
k +

( L∑

l=1

bk,l − 1
)
Uk,∀k ∈ K (24c)

bk,l ∈ {0, 1}, ∀k ∈ K,∀l ∈ L (24d)

where the vectorizing operation vec{·} stacks the columns of a ma-

trix into a column vector. We have thus converted the RCB problem

in the form of the BL-MIP (13) into the MI-SOCP formulation (24)

which admits convex continuous relaxations and can be solved using

the convex continuous relaxation based BnC method [30–33].

5. OPTIMAL AND NEAR-OPTIMAL ALGORITHMS

5.1. Optimal Solutions via the BnC Method

Due to advancement of parallel computing, the convex continuous

relaxation based BnC method [30–33] is commonly used to solve

MI-SOCPs, such as the formulated RCB problem (24). The upper

bounds and/or optimal solutions computed by the BnC procedure

can be used as benchmarks to evaluate the performance of fast near-

optimal algorithms when the optimal solutions cannot be reached in

reasonable time in practice. The BnC algorithm relies on solving the

continuous relaxation of (24), given by the following SOCP:

Ψ(bmc)
, max

{bk,l,pk,l}
f({bk,l}, {pk,l}) (25a)

s.t. (2) – (4), and (24c) (25b)

0 ≤ bk,l ≤ 1, ∀k ∈ K,∀l ∈ L (25c)

where the variables {bk,l,∀k ∈ K, ∀l ∈ L} originally constrained

in the discrete set {0, 1} as in Eq. (24d) are relaxed to be continuous

variables in the closed interval [0, 1] as in Eq. (25c). The non-integer

valued variables in {bk,l,∀k ∈ K, ∀l ∈ L} are gradually branched

and set to binary values in the BnC procedure [30–33].

Based on the structure of the RCB problem (24), strategies can

be introduced to customize the BnC algorithm implemented, e.g.,

in the MI-SOCP solver CPLEX [31], to reduce the computational

efforts. For instance, the following necessary condition
(

min
∆k∈Ek

Tr{(R̂k −∆k)Vl}P (MAX)

)
≥ σ2

kΓ
(MIN)
k (26)
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can easily be tested. In case the necessary condition (27) is not sat-

isfied, i.e., if it is infeasible to assign the lth precoding vector vl to

the kth MS, we fix bk,l = 0 in the RCB problem (24). We can also

introduce problem-specific cuts [30–33], i.e., the constraints which

are redundant to problem (24), but reduce the size of the feasible set

of the continuous relaxation (25). For instance, the following cuts

can be added to the RCB problem (24):

pk,lTr{R̂kVl} ≥ bk,lσ
2
kΓ

(MIN)
k ,∀k ∈ K,∀l ∈ L. (27)

More importantly, we can customize the branching priorities

[30–33] of the relaxed binary variables according to, e.g., the term

P (MAX)Tr{R̂kVl} representing the maximum signal power re-

ceived at the kth MS with the lth precoding vector, ∀k ∈ K, ∀l ∈ L.

That is, a larger term P (MAX)Tr{R̂kVl} corresponds to a larger

branching priority of the variable bk,l, and the non-integer valued re-

laxed binary variable with the largest branching priority is branched

in each branching step in the BnC procedure [30–33]. Further cus-

tomizing strategies for the RCB problem (24) are proposed in [34]

and are omitted here due to limited space.

5.2. A Fast Near-Optimal Algorithm

To facilitate practical applications, we propose here a fast inflation

procedure [21] to compute near-optimal solutions of the RCB prob-

lem (24). The integer feasible solutions found by the inflation pro-

cedure can also be used to initialize the BnC algorithm to reduce the

efforts in computing tight upper bounds and/or optimal solutions.

The inflation procedure starts with
{
b
(0)
k,l = 0, ∀k ∈ K,∀l ∈ L

}
,

and the objective value Ψ(0) = −ρP (MAX). In the nth iteration

(1 ≤ n ≤ K), the best candidate among the zero-valued variables

in {b(n−1)
k,l ,∀k ∈ K, ∀l ∈ L} is chosen and set to one. To determine

the best candidate in the nth iteration, an enumerating process is in-

troduced. Define b̃
(n)
k,l , b

(n−1)
k,l , ∀k ∈ K, ∀l ∈ L. In the (j,m)th

enumeration (1 ≤ j ≤ K, 1 ≤ m ≤ L), if b̃
(n)
j,m = 0, set b̃

(n)
j,m = 1,

and the following convex SOCP

Ψ̃
(n)
j,m , max

{pk,l}

K∑

k=1

βk

L∑

l=1

b̃
(n)

k,l − ρ
K∑

k=1

L∑

l=1

pk,l (28a)

s.t. (4) (28b)

− εk‖vec{Ak}‖2 + Tr
{
R̂kAk

}
≥ σ2

k,

if b̃
(n)
k,l = 1,∀k ∈ K,∀l ∈ L (28c)

is solved, with b̃
(n)

k,l , max
{
b̃
(n)
k,l , 0

}
, ∀k ∈ K, ∀l ∈ L, and then set

b̃
(n)
j,m = −1 to prevent infinite cycles. If problem (28) is infeasible,

set b
(n−1)
j,m = b̃

(n)
j,m. The best candidate in the nth iteration is the

zero-valued variable in {b(n−1)
k,l , ∀k ∈ K, ∀l ∈ L} that corresponds

to the largest entry in
{
Ψ̃

(n)
k,l ,∀k ∈ K,∀l ∈ L

}
. The proposed fast

inflation procedure is summarized in Alg. 1.

6. NUMERICAL RESULTS

In our simulations, we consider a downlink system with M = 4 and

P (MAX) = 15 dB at the BS, and K = 16 MSs. The beamformer

codebook with L = 16 precoding vectors defined in [23] is used.

The SINR requirements of the K MSs are chosen to be identical,

and the noise power is normalized to one. The (m, l)th entry of the

normalized true CCM Rk is modeled as (see, e.g., [2, 3, 9–11])

[Rk]m,l
= exp

(
− (π(m− l)σθ cos θk)

2 /2
)
×

exp
(√

−1π(m− l) sin θk
)
,∀m, l = 1, 2, · · ·M, ∀k ∈ K (29)

Init.: b
(0)
k,l = 0, ∀k ∈ K, ∀l ∈ L, and Ψ(0) = −ρP (MAX)

for n = 1 to K do

If
{
b
(n−1)
k,l 6= 0, ∀k ∈ K,∀l ∈ L

}
, stop and return the

results of the (n− 1)th iteration. Otherwise, define

b̃
(n)
k,l = b

(n−1)
k,l ,∀k ∈ K,∀l ∈ L.

for j = 1 to K, and m = 1 to L do

Initialize Ψ̃
(n)
j,m = 0. If b̃

(n)
j,m = 0, set b̃

(n)
j,m = 1, solve

the SOCP (28), and then set b̃
(n)
j,m = −1.

If the SOCP (28) is infeasible, set b
(n−1)
j,m = b̃

(n)
j,m.

end

Compute (k⋆, l⋆) = argmax
k∈K,l∈L

Ψ̃
(n)
k,l . If Ψ̃

(n)
k⋆,l⋆ < Ψ(n−1),

stop and return the results of the (n− 1)th iteration.

Otherwise, set Ψ(n) = Ψ̃
(n)
k⋆,l⋆ ; b

(n)
k,l = b

(n−1)
k,l , ∀k ∈ K,

∀l ∈ L; set b
(n)
k⋆,l = −1, ∀l ∈ L; and set b

(n)
k⋆,l⋆ = 1.

end

Alg. 1: The proposed fast inflation procedure

where σθ = 2
◦

denotes the spread angle, and θk represents the ran-

dom angular direction of the kth MS. The estimation error matrix

∆k is uniformly generated in a sphere centered at zero and with a

radius of εk = 0.1 [9–11]. The MI-SOCP solver CPLEX [31] is

applied to the RCB problem (24) in the simulations for reference.

As an illustrative example, we choose βk = 1, ∀k ∈ K, and

ρ = 0, i.e., the RCB problem (24) is configured to maximize the to-

tal number of admitted MSs. Fig. 1 displays the average number of

admitted MSs versus the SINR requirement Γ
(MIN)
k , with the sim-

ulation results averaged over 500 Monte Carlo runs. The optimal

solutions are obtained from CPLEX with an average runtime of 40
seconds, and the remaining curves (i.e., the feasible solutions) were

obtained with the same average runtime of 16 seconds. We observe

from Fig. 1 that the average number of admitted MSs achieved by the

proposed Alg. 1 is very close to the global optimum, and the relative

gap in the objective function value at optimum is less than 11.6% for

all considered values of Γ
(MIN)
k .
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(Gap less than 11.6%)

Fig. 1: Average number of admitted MSs vs. Γ
(MIN)
k .

More interestingly, the proposed inflation procedure yields op-

timal solutions of the RCB problem (24) in more than 54% of the

Monte Carlo runs for all chosen values of Γ
(MIN)
k , as shown in

Tab. 1. Particularly, the proposed Alg. 1 generates optimal solutions

in up to 88% of the Monte Carlo runs with Γ
(MIN)
k = 4 dB.

Tab. 1: Percent. of optimal soln. achieved by the proposed Alg. 1

Γ
(MIN)
k [dB] −2 0 2 4 6 8

Percentage 54% 67% 55% 88% 76% 69%
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